Improving Adaptive Filtering
of Spam

Author: Paul Ahern (87227070)

1 April 2007



Paul Ahern 87227070

Supervisor: Gregory Provan
Module: CS5205

Report version: 1.0

Department: Computer Science, UCC

Declaration: I confirm that, except where indicated through the proper use of
citations and references, this is my own original work and that I have not
submitted it for any other course or degree.



Abstract

Bayesian classification of incoming emails is the basis of most modern Spam
filters. This is a highly successful approach, in part because each filter learns
the requirements of the individual user. Having to attack many different filters
makes the Spammers’ job harder.

This project models the behaviour of general classifiers to determine by how
much their performance can be improved by the addition of email-specific rules.
Specifically a Whitelist of email addresses from whom receiving Spam is unlikely.

Naive Bayes, Markovian and Hyperspace classifiers are tested and analysed.



Contents

1 Introduction

2 Background

3 Details
3.1 Software . . . . . . . ..
3.2 Test Data . . . . . . . . .. . e
3.3 Process . ...
34 Results. . . . . ...
3.4.1 C(lassifier Training and Testing . . . . . .. ... .. ...
3.4.2 Bayesian Inference Network . . . . .. ... ... .. ...

4 Conclusion

5 Appendices

5.1 Procedures . . .. .. ... ...
5.1.1  Steps . . . ..
5.1.2  (CS5205.zip contents . . . . . . .. ...

DO O i W W M

~J

o co 0o @



Chapter 1

Introduction

This project uses two separate Bayesian Processes:

1. Two Bayesian, as well as one non-Bayesian, classifiers.

2. A Bayesian Inference Network which uses probabilities derived by running
the classifiers against a corpus of email.

Bayesian classifiers work by counting the numbers of tokens in sets of data which
have already been classified. The numbers of each token in the set determines
the extent that the presence of that token implies membership of the set. New
data is classified on the basis of the numbers of known tokens contained within
it.

Spam filtering is a specific example of the classification problem. An adap-
tive Spam filter classifies emails into the categories of Spam and Non-Spam and
updates its lists of tokens on the basis of user input. The filter can be updated
when an incorrect classification occurs or when a classification is implicitly con-
firmed by the user deleting an email classified as Non-Spam and not marking it
as Spam.

Naive Bayes operates on the level of individual words and take no account
of the specific structure of email data. This is quite effective, but the addition
of an email-specific heuristic may improve performance further.

For instance many email client applications maintain a list email addresses
to which mail has been sent by the user. This can be used as a Whitelist - a
list of trusted sources who are unlikely to send Spam.

Email recently (Jan-Mar 2007) received by a single email account data is
been analysed to determine how much of it is Spam. Three classifiers are trained
on a subset of this data and then used to classify the remainder. The email data
was also checked to see how much was from known addresses.



Chapter 2

Background

The use of Bayesian classification on this problem was suggested in [Graham (2002)]
and further elaborated on in [Graham (2003)]. Other researchers have explored
the problem with generally positive results (see [Manco (2002)], [Meyer (2004)],
[Oda (2003)] and [Pelletier (2004)]).

Spam filtering is an arms race between the designers of the filters and the
designers of the Spam. Filter effectiveness declines as Spam is created to attack
it. For instance, filter poisoning occurs by sending Spam with many attributes
of Non-Spam. As these emails are flagged as Spam by the user the filter learns
to associate these attributes with Spam.

CRM114 is a system for classifying data. It includes a language which can
be used to apply specific rules (Regular Expressions). Three classifiers already
implemented in this language are:

1. Naive Bayes.
Which uses single works as tokens.

2. Markovian.
Which uses chains of up to five words as tokens.

3. Hyperspace.
A Non-Bayesian classifier which uses the k-Nearest Neighbours, whose
positions are plotted in a hypercube, to determine the classification of
new data.

More detailed descriptions of these and other classifiers can be found in [Yerazunis (2006)]
which is available from the CRM114 website [CRM114].



Chapter 3

Details

This project uses data received by a single email account. Only recent email
is used to train and test the classifiers. Training and testing is performed on
individual emails. This process mirrors the normal experience of filter in the
wild.

Statistics are available on how many distinctive features the Bayesian clas-
sifiers identified in the email corpus.

A Whitelist of email addresses to which mail has been sent from the account
is available. The email data is analysed to determine how many emails, of each
type, were received from addresses on the Whitelist.

This email classification system is modelled using a Bayesian Inference Net-
work. The changes in the probability of an incoming email being Spam or
Non-Spam, depending on the decision of a classifier and whether or not the
sender was on the Whitelist, are recorded.

3.1 Software

This project uses the following software:

Thunderbird (version 1.5.0.10 20070306) Email Client. The source of the
email data. Thunderbird stores emails in MBOX format. [Thinderbird 1.5]

IMAPSize (version 0.3.6) Tool to manage IMAP email accounts. Used in this
project to convert emails from MBOX to EML format. This gives an
individual text file for each email. [IMAPSize]

BASH Scripts Written and run under Kubuntu Linux v6.10. Copies of the
scripts used are available from www.ahernp.com/docs/cs5205.zip

CRM114 (version BlameDalkey 20061103) Classifier system and language.
[CRM114]

GeNlIe (version 2.0.2561.0 20070105) Tool for building Bayesian inference net-
works graphically. [GeNIe 2.0]



Paul Ahern 87227070 CHAPTER 3. DETAILS

3.2 Test Data

The test data consists of 1,370 emails from a single email account. These were
manually divided into four classes:

e training Spam (72 emails)

e training Non-Spam (62 emails)

testing Spam (1,107 emails)

testing Non-Spam (129 emails)

There are a total of 1,179 Spam and 191 Non-Spam emails in the data. This
means that the prior probability of an email being Spam is 86.1% and the
probability of it being Non-Spam is 13.9%.

The emails were checked to see which had been sent from known addresses.
None of the Spam emails were from known addresses. 167 of the 191 Non-
spam emails were from known addresses. This means that the probability of a
Non-Spam email being from a known address is 87.4%.

The training data was used to train the Naive Bayesian Classifier. The
testing data to test it.

The emails used for training were received prior to 14 February 2007 and
those used for testing between that date and 25 March 2007.

3.3 Process
The following steps are performed:

1. Copy available emails into new folders in Thunderbird. The new folders
are called spamTrain, spamTest, nonSpamTrain and nonSpamTest.

2. Count how many Non-Spam emails were from unknown addresses and how
many Spam emails were from known ones.

3. Convert the MBOX files spamTrain, spamTest, nonSpamTrain and non-
SpamTest directories containing separate EML (text) files for each mes-
sage using the IMAPSize (option: tools>mbox2eml) tool [IMAPSize]|.

4. Remove morzilla-thunderbird headers from all EML files. Using BASH
script.

5. For each classifier (Naive Bayes, Markov and Hyperspace):

(a) Train CRM114 classifier using spamTrainC and nonSpamTrainC di-
rectories. Using BASH script.

(b) Classify the contents of the spamTestC and nonSpamTestC directo-
ries with the newly trained classifier. Using BASH script.

(c) Check if each email in the test sets has been classified correctly or
not.

(d) Use the numbers of emails to calculate probabilities for the Bayes
Inference Network in Genie 2.0 [GeNle].



Paul Ahern 87227070 CHAPTER 3. DETAILS

(e) Update the evidence in the Classifier and Whitelist nodes and note
the changes in probabilities of the rest of the network.

The BASH scripts and CRM114 programs used are available for download from
www.ahernp.com/docs/CS5205.zip.

Use them by unzipping to a directory. Create sub-directories called spam-
Train, spamTest, nonSpamTrain and nonSpamTest and copy in the test data.
Then run reset.sh.

This will create new directories called spamTrainC, spamTestC, nonSpam-
TrainC and nonSpamTestC which will contain a version of the email data with
the Thunderbird headers removed.

Then it will train the filters using the contents of the first two directories and
try to classify the contents of the second two. The results of the classifications
will be in .log file.

Finally a summary of the Naive and Markovian classification statistics as
well as the numbers of correct and incorrect classifications performed by each
filter are written to a file called stats.log.

3.4 Results

Obtained from both from the training and testing of the CRM114 filters and
from performing inference on the Bayesian Inference Network.

3.4.1 Classifier Training and Testing

Features identified in the Training data by the Bayesian classifiers:

| Classifier | Naive | Markovian |
Non-Spam features | 47,137 754,192
Spam 27,306 436,906
Similarities 2,720 30,938
Differences 36,370 580,774
Similarity Ratio 1:13.4 1:18.8

The Markovian approach identifies far more features than that of Naive
Bayes. More significant for the accuracy of the classifier is that it also finds
proportionally more differences than similarities between the training sets.

Correct (y/) and incorrect (x) classifications, out of 1,107 Spam and 129
Non-Spam emails respectively:

| Classifier | Naive | Markovian || Hyperspace |
Non-Spam,/ | 123 124 122
Non-Spam x 6 5 7
Spam./ 1073 1086 1088
| Spamx [ 34 | 21 | 19 |

Note that the accuracy of the Markovian classifier exceeds that of Naive
Bayes at identifying both Non-Spam and Spam; While the Hyperspace (k-
Nearest Neighbours) classifier is the most accurate at identifying Spam it also
has the worst false positive rate of the three.



Paul Ahern 87227070 CHAPTER 3. DETAILS

Prior Probabilities

Spam 0.861
NonSpam 0.139

Whitelisted @ Hyperspace

Found 0.130 Spam 0.841 Spam 0.850 Spam 0.853
NotFound 0.870 NonSpam 0.159 NonSpam 0.150  NonSpam 0.147

Figure 3.1: Bayesian Inference Network

3.4.2 Bayesian Inference Network

Probabilities assigned in Bayesian Inference Network depending on evidence (y/
yes or X no):

Evidence Result

Classifier | Spam | Whitelisted | Non-Spam | Spam
0.139 0.861

Naive vV 0.008 0.992
Naive V NV 0.405 | 0.59
Naive vV X <0.001 0.999
Naive X 0.834 0.166
Naive X Vv 0.998 0.002
Naive X X 0.389 0.611
Markovian vV 0.006 0.994
Markovian vV Vv 0.359 0.641
Markovian vV X <0.001 0.999
Markovian X 0.891 0.109
Markovian X Vv 0.999 0.001
Markovian X X 0.510 0.490
Hyperspace vV 0.009 0.991
Hyperspace Vv Vv 0.439 0.561
Hyperspace vV X 0.001 0.999
Hyperspace X 0.101 0.899
Hyperspace X vV 0.999 0.001
Hyperspace X X 0.531 0.469




Chapter 4

Conclusion

The Naive Bayes approach is surprisingly accurate at classifying current emails
into Spam and Non-Spam.
Probabilities of correct (/) and incorrect (x) classifications:

| Classifier | Naive | Markovian || Hyperspace |
Noun-Spam,/ | 95.3% 96.1% 94.6%
Non-Spamx | 4.7% 3.9% 5.4%
Spam,/ 96.9% 98.1% 98.3%

[ Spamx [31% [ 19% [ 17% |

As expected the more sophisticated Markovian approach yielded even better
results. The Hyperspace (k-Nearest Neighbours) approach is a little less suc-
cessful at identifying Non-Spam, but was the best method in terms of accurately
identifying Spam emails.

The amount of data used in the project and the small spread in the re-
sults obtained from the different classifiers means that these results cannot be
considered statistically significant.

The model suggests that the addition of a Whitelist rule to the filtering
process raises the success rate of all the filters to at identifying Spam and Non-
Spam to the 99.9% level, so long as the Whitelist agrees with the decision of
the filter.

When a filter classifies input from a Whitelisted address as Spam the cer-
tainty drops dramatically. Implementations of this type of filter should let the
user decide if such an email was Spam or not.

An additional discovery in the course of this project was that even a Naive
Bayes classifier trained on recent emails was more accurate than the adaptive
filter built into Thunderbird client software which had been running continu-
ously for a year. Resetting this filter immediately improved its performance.
Regular retraining of filters on recent emails would seem to be indicated. Once
again this lesson, as a one-off case, cannot be considered statistically significant.



Chapter 5

Appendices

5.1

Procedures

The project’s goal is to model the behaviour of adaptive spam filters using a
Bayesian Inference Network and to determine to what extent their performance
can be improved by the application of a Whitelist of trusted email addresses.
Email from a known address is considered unlikely to be spam.

The scripts and programs provided for download at www.ahernp.com/docs/
(CS5205.zip are used to train three adaptive spam filters on one set of email data
and then test their effectiveness by using them to classify another.

5.1.1 Steps

Use the scripts and programs to train and test classifiers:

1.
2.

Divide the email data (.EML format) into spam and nonSpam instances.

Divide these instances into training and testing sets.

. From these sets of emails, populate four folders: spamTrain, spamTest,

nonSpamTrain and nonSpamTest.

Run reset.sh BASH script to build the training and testing environments
and to perform the training and testing of the three filters. Press CTRL-D
to start each training process.

The results of the training and testing are written to stats.log

Use the probabilities of successful classification in the Bayesian Inference
Net (in Genie 2.0).

5.1.2 (CS5205.zip contents
CRM114 programs:

e naiveTrain.crm - Learn input data and build statistics files using naive

Bayesian classification

e naiveClassify.crm - Classify input data using naive Bayesian statistics files



Paul Ahern 87227070 CHAPTER 5. APPENDICES

markovTrain.crm - Learn input data and build statistics files using Marko-
vian classification

markovClassify.crm - Classify input data using Markovian statistics files

hyperspaceTrain.crm - Learn input data and build statistics files using
k-Nearest Neighbours classification

hyperspaceClassify.crm - Classify input data using KNN statistics files

Genie 2.0 model:

(CS5205.xdsl - Bayesian Inference Network

BASH Scripts:

classify.sh - Classify every file in a directory

cleanEML.sh - Use grep to remove thunderbird headers
getStats.sh - Collect numbers of emails and classifications
reset.sh - Run entire training/classification process
retest.sh - Rerun testing part of the process

retrain.sh - Rerun training part of the process

train.sh - Train filter on every file in a directory



Bibliography

[CRM114]
[GeNIe 2.0]
[Graham (2002)]

[Graham (2003)]

[IMAPSize]

[Manco (2002)]

[Meyer (2004)]

[Oda (2003)]

[Pelletier (2004)]

[Thinderbird 1.5]

CRM114. crm114.sourceforge.net/, accessed 27 March 2007.
GeNlIe 2.0. genie.sis.pitt.edu/, accessed 27 March 2007.

P Graham, A Plan for Spam (2002).
www.paulgraham.com/spam.html, accessed 27 March
2007.

P Graham, Better Bayesian Filtering  (2003).
www.paulgraham.com /better.html, accessed 27 March
2007.

IMAPSize. www.broobles.com/imapsize/, accessed 27
March 2007.

G Manco, E Masciari, M Ruffolo and A Tagarelli, Towards
An Adaptive Mail Classifier (2002).

TA Meyer and B Whateley, SpamBayes: Effective open-
source, Bayesian based, email classification system (2004)

T Oda and T White, Developing an Immunity to Spam
(2003).

L. Pelletier, J. Almhana and V. Choulakian, Adaptive filter-
ing of spam (2004).

Thunderbird (version 1.5.0.10 20070306).
www.mozilla.com/en-US/thunderbird/, accessed 27 March
2007.

[Yerazunis (2006)] W. S. Yerazunis, CRM114 Revealed (2006).

10



