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1.1 Background 1 LECTURE 11 JANUARY 2007

1.1 Background

Constraint Based programming was developed in the 1980s to improve Logic Pro-
graming (LP, e.g. PROLOG).

This led to Constraint Logic Programming (CLP) which in turn begot Constraint
Programming (CP).

In general CP is very good at solving feasibility problems, but is not the best
approach for optimisation. Though there is considerable overlap between CP and
Operations Research.

Operations Research (OR) was developed from 1936 by the RAF to process the
data provided by radar stations. This proved so successful that it was extended to
other �elds throughout World War II.

After the war the Rand Corporation in the US developed OR further.

1.2 Linear Programming

Programming in the sense of planning or organising. Term predates computer
programming.

A linear program is in the form: Maximize (or minimize) an Objective Func-
tion (Σn

j=1cjxj) subject to Linear Constraints (Σn
i=1aijxi ≤ or = or ≥ bi), Upper

Bounds (xj ≤ uj) and Non-negativity Restrictions (xj ≥ 0).
xj are called Decision Variables and contain Real values. aij , bi and cj are

constants.

1.2.1 Example

A company has three products P,Q and R. How much of each should be produced
each week to maximize pro�ts, given the following information:

P Q R

Pro�t per unit 45 60 50
Maximum number of sales per week 100 40 60

The company has four machines. Each product has to pass through all four to
be completed. Each machine is only available 2,400 minutes per week.

Per unit processing time
Machine P Q R Machine Availability

A 20 10 10 2,400
B 12 28 16 2,400
C 15 6 16 2,400
D 10 13 0 2,400

The factory costs 6,000 per week to run.
Linear program: maximize 45P + 60Q + 50R, subject to

P ≤ 100, Q ≤ 40, R ≤ 60,

P ≥ 0, Q ≥ 0, R ≥ 0,

20P + 10Q + 10R ≤ 2, 400,

12P + 28Q + 16R ≤ 2, 400,

15P + 6Q + 16R ≤ 2, 400,

10P + 13Q ≤ 2, 400.

Pass Linear Model to a standard solver and get the result: P = 81.82, Q =
16.36, R = 60. Thus Objective Function is 7, 664. ∴

4



2 LECTURE 15 JANUARY 2007

1. Pro�t is 1, 664.

2. Machine Usage:
A is used for 20P + 10Q + 10R = 2, 400.
B is used for 2, 400.
C is used for 2, 285.
D is used for 1, 064.
Note that machines C and D have some idle time.

3. Products Made:
P : 81.82 made but could sell 100.
Q: 16.36 made but could sell 40.
R: 60 made and could only sell 60.

Note that machines A and B run at full capacity so their constraints are only just
satis�ed. These are tight (or active) constraints. They are a bottleneck - they limit
pro�ts.

The market constraint on R is also tight. The upper bound 60 on R is also tight.

1.2.2 Abstractions, Assumptions, Simpli�cations

• We cannot make fractions of P,Q and R - they are units. We can round o� to
P = 82, Q = 16 and R = 60. For some problems this may violate a constraint
or it may drastically change the objective function.1

• Everything is linear (the model takes no account of economies of scale).

• Exact market demand (this is surely unrealistic).

• Complications ignored (e.g. we assume that all combinations of P,Q and R
can be scheduled through A,B, C and D with perfect e�ciency - no queuing).

2 Lecture 15 January 2007

Jensen and Bard, Chapter 2.

By the end of the course we should be able to model new problems and �nd
solutions.

2.1 Linear Programming

Understanding LPs by plotting graphs.

Taking the example from the previous lecture and assigning R = 60 to reduce
the problem to one with two variables (which can be plotted on a two-dimensional
graph) the problem becomes:

Maximize Z = 45P + 60Q,

subject to 20P + 10Q ≤ 1800 (A); 12P + 28Q ≤ 1440 (B); 15P + 6Q ≤ 1440
(C); 10P + 15Q ≤ 2400 (D); P ≤ 100; Q ≤ 40; P ≥ 0; Q ≥ 0.

In general, each constraint de�ned a di�erent polyhedron.

Optimal feasible solution is always a vertex (corner) of the polyhedron. So we
only need to check Z at each vertex (basically this is how linear solution software
works). There is a �nite number of vertexes.

1There is a nice method for solving linear problems, but it cannot be used if the variables have

to be integers. Forcing integrity makes the problem much harder.
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2.2 Some more LP examples 2 LECTURE 15 JANUARY 2007

Figure 1: Polyhedron

2.2 Some more LP examples

2.2.1 Isovalue Contour parallel to Polyhedron side

Maximize Z = 3X1 −X2

Subject to 15X1 − 5X2 ≤ 30; 10X1 + 30X2 ≤ 120; X1 ≥ 0; X2 ≥ 0.

Figure 2: Many Solutions

In this case we have an in�nite number of optimal feasible solutions. Algorithm
checking vertexes still works and �nds two optimal solutions.

2.2.2 Feasible Area In�nite

Maximize Z = −X1 + X2

Subject to −X1 + 4X2 ≤ 10; −3X1 + 2X2 ≤ 2; X1 ≥ 0; X2 ≥ 0.

6



2 LECTURE 15 JANUARY 2007 2.2 Some more LP examples

Figure 3: In�nite Area

Feasible area is in�nite but there is only one optimal feasible solution.

2.2.3 No Optimal Feasible Solution

Maximize Z = X1 −X2

Subject to 3X1 + X2 ≥ 10; X1 ≤ 4; X1 ≥ 0; X2 ≥ 0.

Figure 4: In�nite Solution

In this example there is no optimal feasible solution as the feasible solution is
in�nite.

2.2.4 No Feasible Region

Maximize Z = X1 + X2

Subject to 3X1 + X2 ≥ 6; 3X1 + X2 ≤ 3; X1 ≥ 0; X2 ≥ 0.

7



2.3 Blending Problem 2 LECTURE 15 JANUARY 2007

Figure 5: None Feasible

2.2.5 No Feasible Region 2

...X1 ≥ 0; X2 ≥ 0.

Figure 6: None Feasible 2

2.3 Blending Problem

Problem Blending ingredients to get a mixture with certain properties. In this
example, animal feed.

The feed must contain between 0.8% and 1.2% of Calcium; At least 22% Protein
and at most 5% Fibre. Minimize cost.

Ingredients Calcium Protein Fibre Unit Cost

Limestone (L) 0.380 0.00 0.00 10.0
Corn (C) 0.001 0.09 0.02 30.5

Soybean Meal (S) 0.002 0.50 0.08 90.0

What proportion of each ingredient should be in a unit of feed?
Minimize Z = 10L + 30.5C + 90S
Subject to 0.380L + 0.001C + 0.002S ≥ 0.008 (Calcium); 0.380L + 0.001C +

0.002S ≤ 0.012 (Calcium); 0.09C + 0.50S ≥ 0.22 (Protein); 0.02C + 0.08S ≤ 0.05
(Fibre); L + C + S = 1 (Proportion Constraint); L ≥ 0;C ≥ 0;S ≥ 0.

Result: L = 0.03; C = 0.65; S = 0.32.
Substituting into Z, the cost is 0.49.
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3 LECTURE 22 JANUARY 2007

3 Lecture 22 January 2007

Jensen and Bard, Chapter 2.
More LP examples

3.1 Car Rental Problem

A company expects several visitors and must rent cars for all of them:

Day Sat Sun Mon Tue Wed Thu Fri

Cars 2 5 10 9 16 7 11

A car rental company has di�erent rental plans:

Plan Description Cost

1 Daily Sat-Sun 35
2 Daily Weekdays 50
3 3 Consecutive Weekdays 125
4 Weekend (Sat+Sun) 60
5 All Weekdays 180
6 All Week 200

Objective: Rent enough cars for all visitors; minimise cost.

De�ne Variables: Xj is the number of cars rented on day j (j : 1 . . . 7). Yk is the
number of cars rented for three consecutive weekdays (k : 3, 4, 5). e.g. Y3 is
the number of cars rented Mon-Wed). WE is the number of cars rented for
whole weekend. WD is the number of cars rented for all weekdays. W is the
number of cars rented for the whole week.

One variable per plan, except for the �rst two which are both daily.
Covering Constraints, i.e. enough cars are rented each day:
(Sat) X1 + We + W ≥ 2;
(Sun) X2 + We + W ≥ 5;
(Mon) X3 + Y3 + Wd + W ≥ 10;
(Tue) X4 + Y3 + Y4 + Wd + W ≥ 9;
(Wed) X5 + Y3 + Y4 + Y5 + Wd + W ≥ 16;
(Thur) X6 + Y4 + Y5 + Wd + W ≥ 7;
(Fri) X7 + Y5 + Wd + W ≥ 10.
Non-negativity Constraints: Xj , Yk,WE ,WD,W ≥ 0.
Minimize Z = 35X1 + 35X2 + 50X3 + 50X4 + 50X5 + 50X6 + 50X7+125Y3 +

125Y4 + 125Y5 + 60WE + 180WD + 200W .
Result (Day-Cars): Sat-0, Sun-0, Mon-5, Tue-0, Wed-9, Thu-0, Fri-4. MonWed-

0, TueThu-0, WedFri-2, Weekend-0, Weekday-0, Week-5.

3.2 Power Distribution Problem

Regional Power System, 3 generating stations (A,B, C) each serving its own area.
Three outlying areas (X, Y, Z) with no stations. They have demands of 25, 50 and
30 MW.

Each station can supply:

Station Capacity2 Unit Cost

A 100MW 500
B 75MW 475
C 100MW 400

9



3.2 Power Distribution Problem 3 LECTURE 22 JANUARY 2007

Some stations can supply only some outlying areas: X → A&C; Y → B&C;
Z → A&B.

Figure 7: Power�ow Connections

Supplying from any of A,B, C to any X, Y, Z has 10% powerloss. Supplying
from any station to another has 5% powerloss.

Find an optimal plan to supply X, Y, Z; minimize cost.

This is an example of the Generalised Network Flow model.

De�ne some variables:

Flows from Station to Station - UAB , UAC , UBA, UBC , UCA, UCB .

Flows from Station to area - VAX , VCX , VBY , VCY , VAZ , VBZ .

Power production - PA, PB , PC .

Conservation Constraints (each station generates as much power as it outputs):

UAB + UAC + VAY + VAZ − 0.95UBA − 0.95UCA = PA.

UBA + UBC + VBY + VBZ − 0.95UAB − 0.95UCB = PB .

UCA + UCB + VCX + VCY − 0.95UAC − 0.95UBC = PC .

−0.9VAX − 0.9VCX = −25.

−0.9VBY − 0.9VCY = −50.

−0.9VAZ − 0.9VBZ = −30.

Upper Bounds on output of stations: PA ≤ 100;PB ≤ 75;PC ≤ 100.

Non-negativity Constraints: PA ≥ 0;PB ≥ 0;PC ≥ 0.

Minimize Z = 500PA + 475PB + 400PC .

Result: Station C, the least expensive resource, generates up to its limit of
100MW. This power serves the needs of areas X and Y, with the remaining 16.66MW
being transshipped to station A. The latter quantity is then transmitted directly
to area Z incurring an additional 10% loss on the way. Evidently, station A serves
only its local area as a result of its high operating costs.

10



4 LECTURE 25 JANUARY 2007

Figure 8: Power�ow Result

4 Lecture 25 January 2007

Jensen and Bard, Chapter 3 (Simplex) & 7 (Integer Programming).

4.1 Solving LP

Two approaches:

• Simplex (1947) works by exploring the feasible polyhedron's boundaries.

• Interior Point Methods starts inside the feasible region (guaranteed to �nish
in polynomial time).

Simplex is not proved to be polynomial but is usually the fastest method. Interior
Point is particularly good at �nding solutions e�ciently for sparse patterns.

4.2 Integer Programming

In IP or ILP (Integer Linear Programming) variables can only take discrete values
(usually integers - sometimes only 0 and 1).

If some variables are continuous and some discrete it is called a Mixed Integer
Problem (MIP or MILP). A MIP is an LP and constraints, e.g. V ∈ {0, 1}.

MIP are harder to solve than LP. There is no known polynomial algorithm for
MIP or IP. They are NP-hard problems.

MINLP - Mixed Integer Non-Linear Programming - is a MIP with some non-
linear constraints, e.g. X2 + 3yz ≤ 2.

Quadratic Programming (QP): Constraints are linear but the Z function is a
quadratic.

4.3 Site Selection Problem

A company will build new buildings at four sites (1,2,3,4). It has a choice of three
designs (A, B, C).

Options A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

Income 6 7 9 11 12 15 5 8 12 16 19 20
Investment 13 20 24 20 39 45 12 20 30 44 48 55

Maximize total income; But total investment must be less than 100.
Notation:

11



4.4 Logical Constraints 5 LECTURE 29 JANUARY 2007

• variable yij : yij = 1 means we use design i at site j.
yij = 0 means we do not.

• constants Income Pij , Investment aij .

The integer program: maximize Z = ΣiΣjPijyij

Subject to ΣiΣjaij ≤ 100; y ∈ {0, 1}.
Solution yA1 = 1; yA3 = 1; yB3 = 1; yB4 = 1; yC1 = 1; others are zero.
But some sites have more than one design!

Need more constraints Σiyij ≤ 1 - for each j. These are Logic Constraints.

Suppose the company come up with some additional constraints:

1. Site 2 must have a building.

2. Design A can only be used at 1,2 or 3 if it is also used at 4.

3. Only use two designs.

Add more constraints:

1. Σiyi2 = 1.

2. yA1 + yA2 + yA3 ≤ 3yA4. (If yA4 = 0 then LHS also zero).

3. Third constraint is tricky to specify using the y variables. Use additional
auxiliary variables (not needed to describe problem, but to help modelling)
wi; wi = 1 means that design i is used; wi = 0 means it isn't.
The constraint is Σiwi ≤ 2.
Also have to relate w and y: Σiyij ≤ 4wi.

New solution: yA1 = 1; yA4 = 1; yB2 = 1; yB3 = 1; all others zero. wA = 1;wB = 1.

4.4 Logical Constraints

Modelling tricks to model logical relationships between variables.

Let the decision variables be y1 . . . yn ∈ {0, 1}.

1. These decisions are mutually exclusive: Σn
i=1yi ≤ 1.

2. More generally, at most k decisions can be true: Σn
i=1yi ≤ k.

3. At least k decisions can be true: Σn
i=1yi ≥ k.

4. Exactly k decisions can be true: Σn
i=1yi = k.

5. If any (one or more) of these are true then so is w: Σn
i=1yi ≤ nw.

5 Lecture 29 January 2007

Jensen and Bard, Chapter 7 (Integer Programming).
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5 LECTURE 29 JANUARY 2007 5.1 Logical Constraints

5.1 Logical Constraints

1. If all of these are true then so is w: Σn
i=1yi ≤ (n− 1) + w.

2. If at least k of these are true then so is w: Σn
i=1yi ≤ (k− 1) + (n− (k− 1))w.

3. In a MIP consider x ≤ uy where x is real; y is binary; u is an upper-bound
on x (x ≤ u): If x > 0 then y = 1.

4. If the decision y1 is true (1) and y2 is false (0) then do w: y1+(1−y2) ≤ w+1.

5. �Big-M� model Suppose r is a positive Real; b is a binary. If b = 1 then
r = 100, but if b = 0 then r = 0: 100 ≤ r + M(1− b); r ≤ 100b.
Check: If b = 0, 100 ≤ r + M ; r ≤ 0 (i.e. r = 0). If b = 1, 100 ≤ r; r ≤ 100
(i.e. r = 100).
Big-M models are hard to solve.

6. Suppose we want x to take discrete values that are not consecutive integer, e.g.
{1, 3, 4.5, 16}: Introduce four new binary variables y1, y2, y3, y4. Constraints
x = y1 + 3y2 + 4.5y3 + 16y4; y1 + y2 + y3 + y4 = 1.

5.2 Maximum Density Still Life

In the game of Life, �nd an unchanging pattern, in a �nite area, with the most
living cells.

Game Rules:

1. A cell with two living neighbours does not change.

2. A cell with three living neighbours becomes living in the next iterations.

3. Any other cell becomes dead.

Model giving good results: For each cell e de�ne a binary variable xe (in a 10× 10
area e . . . 100).

Constraints

Death by Isolation: A cell with less than two live neighbours must be dead
(otherwise it would change in the next iteration): 2xe − Σf∈N(e)xf ≤ 0 (N(e)
returns the set of e's neighbours).

Death by Overcrowding: A cell with more than three live neighbours must be
dead: 3xe + Σf∈N(e)xf ≤ 6.

Birth rule: A cell with three live neighbours must be live: −xe + Σf∈Sxf −
Σf∈N(e)−Sxf ≤ 2 (S any three member set of N(e)).

No cell outside the area may become live: xg +xh +xi ≤ 2; where g, h, i are any
three contiguous cells at the boundary of the area.

Maximize Z = Σexe.
A 13× 13 area was solved in ten hours using integer programming software.
Example 8× 8 solution:

1 1 0 1 1 0 1 1
1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 1
1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 1
1 1 0 1 1 0 1 1
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5.3 Peaceable Armies of Queens

From the Optima Journal: N × N chessboard; Place two equal sized armies of
queens so that no black queen can attack a white queen. Maximize size of armies.

Model giving good results: For each square (i, j) on the board de�ne two binary
variables: bij = 1 if there is a black queen in that square (otherwise zero); Likewise
for wij = 1 and white queens.

Maximize Z = ΣiΣjbij

Subject to ΣiΣjbij = ΣiΣjwij

For any two attacking squares (i, j) and (i′, j′): bij + wi′j′ ≤ 1.
This includes (i, j) and (i′, j′) lying on the same row, column, diagonal or being

the same square.

9 × 9 boards have been solved in a reasonable amount of time by standard IP
software. Specialist software has been used to solve 12× 12 boards.

Example 12× 12 solution:

. . . b b b . . . . . b

. . . b b b . . . . b .

. . . b b b . . . b . b

. . . . b . . . . . b b

. . . . . . . . . b b b

. . . . . . . . . b b .

. . w . . . w . . . . .

. w w . . . . . . . . .
w w w . . . . . w . . .
w w . . . . . w w . . .
w . w . . . w w w . . .
. w . . . . w w w . . .

6 Lecture 1 February 2007

6.1 Steel Mill Slab Design

Slabs of steel are produced in a few weights; then they are cut into pieces to ful�ll
orders. Given these orders, pack orders onto slabs, minimize the wastage (or total
slab size).

Each order is given a property called �colour� representing the route it follows
through the mill. No slab can be assigned more than p colours (e.g. p = 2).

We don't know how many slabs we need. This makes it hard to de�ne variables.
Choose a maximum number, d, of slabs, some might not be used. (e.g. divide the
smallest slab size into the total order size).

Variables:

Weight of slab j is Sj .

xij = 1 if order i is assigned to slab j.

Numbers: kiis colour of order i. wi is weight of order i.

Constraints:

Each order is assigned to one slab - Σixij = 1.
Slab capacity must be respected - Σiwixij ≤ Sj .

For colour we need variables - ckj = 1 if an order of colour k is assigned to slab
j - xij ≤ ckj .

No more than p colours per slab - Σkckj ≤ p.

Objective function: Minimize Z = ΣjSj .

14
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6.2 Warehouse Location Problem

See section 7.4 in Jensen and Bard
A company wants to open warehouses to supply its stores and has a choice of

locations. Each warehouse has the same maintenance cost and capacity (maximum
number of stores it can supply). Each store is supplied by exactly one warehouse.
The cost depends on the warehouse location.

Decide which warehouses to open and which warehouse should supply each store,
minimize maintenance and supply costs.

Binary Variables: Oi = 1 if warehouse i is open (i.e. location i is used); Sij = 1
if warehouse i supplies store j.

Constraints:
Each store supplied by one warehouse - ΣiSij = 1.
Warehouse capacities - ΣjSij ≤ Ci(C is number of stores warehouse i can supply)
Only open warehouses can supply stores - Sij ≤ Oi (alternatively, to use fewer

constraints, ΣjSij ≤ Oi)
Objective function: Minimize Z = kΣiOi + ΣiΣjSijki (�rst k is maintenance

cost, second is supply costs)

6.3 Cutting Stock Problem

Jensen and Bard, page 243.
Paper company sells rolls of paper of �xed length and �ve possible widths: 5,

8, 12, 15, 17 (feet). These are cut from 25 foot wide rolls. All orders must be cut
from these.

There are eleven ways of cutting:

Rolls Wastage

17, 8 0
17, 5 3
15, 8 2

15, 5, 5 0
12, 12 1
12, 8, 5 0
12, 5, 5 3
8, 8, 8 1
8, 8, 5 4

8, 5, 5, 5 2
5, 5, 5, 5, 5 0

Demand:

Width Demand

5 40
8 35
12 30
15 25
17 20

Meet demands and minimize wastage (or number of big rolls).

7 Lecture 5 February 2007

Cutting Stock Problem continued.
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Figure 9: Sample 3x3 solution

De�ne eleven integer variables Xi to represent the number of rolls cut in each
pattern.

Objective function: Minimize Z = x1 + . . . + x11.

Subject to x2 + 4 + x6 + 2x7 + x9 + 3x + 5x11 ≥ 40 (demand for width 5 rolls);
x1 + x3 + x6 + 3x8 + 2x9 + x10 ≥ 35 (demand for width 8 rolls); 2x5 + x6 + x7 ≥ 30
(demand for width 12 rolls); x3 +x4 ≥ 25 (demand for width 15 rolls); x1 +x2 ≥ 20
(demand for width 17 rolls).

There are better techniques than IP to solve these sorts of problems, as the
numbers of variables can get very large.

7.1 Job-Shop Scheduling Problem (JSP)

An n×m JSP: n jobs, m tasks and resources. Each task has a duration D and has
to be done on a particular resource (i.e. machine). Each resource can only be used
by one task at a time. Each job's tasks must be done in order. Tasks, for the same
job, cannot overlap in time.

Find a solution minimizing the total time taken: The makespan.

Model with IP (not necessarily the best way).

Represent time as integers 0 . . . T − 1 (Guess a large T ).

De�ne integer variables: Sij : start time of task j in job i.

Non-negativity and upper-bounds: Sij ≥ 0 and Sij ≤ T .

Tasks in each job are in correct order: Sij − Sij−1 ≥ Dij−1.

No resource is doing more than one task at once. Resource capacity constraint
(remember that each task is on a speci�c machine): (Sij+Dij ≤ Si′j)⊕(Si′j+Di′j ≤
Sij).

However ⊕ (XOR) is not in IP form, so de�ne 0 . . . 1 variables Vii′j (i < i′)
instead.

If Vii′j = 1 then Sij ends before Si′j begins; else vice-versa: Sij +Dij −TVii′j ≤
Si′j ; Si′j + Di′j − T (1− Vii′j) ≤ Sij . (using T as a big-M)

Makespan integer variable m.

Objective function: Minimise m where Sij + Dij ≤ m for all tasks.

Additional (redundant) constraints sometimes help the software to �nd a so-
lution more quickly. For example, in this case, the start times must be after the
duration of the predecessors and the task and its successors must end before T :
Σj−1

j′=1Dij′ ≤ Sij ≤ T − Σm
j′=jDij′ .
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7.2 Travelling Salesman Problem (TSP)

Jensen & Bard, page 238.
Minimize total distance travelled to visit a set of cities (or minimize the cost of

the journey: going from A to B may have a di�erent cost than going from B to A -
this is an asymmetric TSP).

Represent costs by a matrix:

1 2 3 4
1 - 27 43 16
2 7 - 16 1
3 20 13 - 35
4 21 16 25 -

Many problems can be modelled using TSP, e.g. airplane takeo� order from an
airport (big planes create more turbulence but are also more resistant to it; a light
plane has to wait longer than a jumbo to take o� after another jumbo).

Solution to the TSP is an optimal Hamiltonian cycle on a graph.

Figure 10: Graph

On a graph one can plan a tour which visits every vertex and returns. Hamilto-
nian path means that you don't have to return to your start point.

8 Lecture 12 February 2007

TSP continued.
G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-

salesman problem. (1954)
For each trip between cities i and j de�ne a binary variable: xij = 1 is trip is

made from i to j; zero otherwise.
Distance matrix Cij . Number of cities is n.
Objective function is to minimize Z = Σn

i=1Σ
n
j=1Cijxij .

Such that

• Arrive at city i from exactly one j: Σn
j=1xij = 1.

• From city i go to exactly one city j: Σn
i=1xij = 1.

• Visit each city only once. Prevent any tour that doesn't involve all cities. For
a sub-tour S: Σi∈SΣj∈Sxij ≤ |S|−1. (Need one of these constraints for every
possible sub-tour. Not all trips in sub-tour can be made. Only need sub-tours
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involving up to half the number of cities - the remaining cities would be in
another small sub-tour. So there would be some 2n−1−n−1 such constraints).

This model only works for small problems - But constraints can be generated as
needed and not put into a �le.

There are at least eight di�erent ways of modelling TSP as IP. Here is another,
a MIP called the sequential formulation.

Discovered in 1960 by Miller, Tucker and Zemlin.
Drop the sub-tour constraints. De�ne continuous variables ui. If ui < uj then

we visit city i before city j: ui − uj + nxij ≤ n− 1.
Only need n2 such constraints. Uses big-M technique to prevent sub-tours.

Cases:

• If xij = 0 the ui − uj ≤ n− 1 (merely stops ui from being much greater than
uj).

• If xij = 1 the ui − uj ≤ −1 (forces ui to be at least 1 less than uj).

So the ui's will be ordered and will tell us the order of the cities.
This model is far more compact, but harder to solve.
The speci�c distances between cities determine how di�cult it is to �nd (or

prove you've found) an optimal solution.
Some problems are equivalent to TSP. For example, scheduling aircraft takeo�s.

Planes taking o� create turbulence. The bigger the plane the more turbulence.
Smaller planes are more sensitive to turbulence. This creates an ATSP (Asymmetric
TSP).

Number of minutes each type of plane has to wait. Column plane takes o� �rst;
row plane takes o� second:

Jumbo Airbus Cessna

Jumbo 3 2 1
Airbus 4 3 1
Cessna 8 7 2

Objective function would be to minimize total waiting time.

8.1 Template Design

Of cat food labels.
Not all problems are easy to model as IP.
Template 1:

beef beef beef
beef rabbit rabbit
rabbit tuna tuna

Template 2:

tuna beef chicken
chicken mixed mixed
mixed mixed mixed

15, 000 runs of template 1 and 23, 000 runs of template 2; generate:
15, 000× 2 tuna +23, 000× 1 tuna etc. of each label.
The problem is to design a set of templates and runs satisfying demand (47, 000

tuna, 80, 000 beef, etc.) while minimizing the total number of runs.

18
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We don't know the best number of templates, so �x it as a small number.

Each template has a number of slots (capacity) s (s = 9 in this case).

De�ne some integer variables: ri is the number of runs of template i.

Call the demand for each type of variable i: Di.

Objective function: Minimize Z = Σiri.

ST

Slots can't be empty: Σitij = S.

Satisfy demand: Σiritij ≥ Dj .

This is the natural way to express the demand constraint, unfortunately ritij is
the product of two variables, so the problem is non-linear.

Some systems can handle non-linear constraints (probably not Lindo) but they
can be harder to solve.

Here is a linear model of the same problem:

De�ne a binary variable aijk for each template i, label type j and each slot on
the template k.

Also de�ne integer variables fijk for how many labels of type j are created by
slot k on template i.

Constraints:

A slot has only one type of label: Σjxijk = 1.
If label type j is in slot k of template i then that slot generates riof label j,

otherwise zero: fijk ≤ ri + M(1− aijk); ri ≤ fijk + M(1− aijk); fijk ≤Maijk.

Now we can use a linear constraint for the demands: ΣiΣkfijk ≥ Di.

This is not a very good model:

• It is a big-M model

• It has a lot of symmetry.

Symmetry: every solution has many di�erent representations (can reorder slots on
a template to get the same results). This makes the search space much bigger -
there are more possibilities to explore.

9 Lecture 15 February 2007

IP in general is NP-hard (can take exponential time to solve) but some problems
can be solved faster with Greedy Algorithms.

9.1 Greedy Algorithms

9.1.1 Minimum-Spanning Tree

Find a subset of edges such that there is a path between any two nodes, with
minimum total path weight.
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Figure 11: Graph

The solution is always a tree.

Figure 12: Minimum Spanning Tree (MST)

A Greedy Algorithm:

1. Let m be the number of nodes in the graph. Choose any node; Put it into a
set S1 and put all the other nodes into a set S2.

2. From all the edges with ends in S1 and S2, choose the one with the smallest
weight: (i, j) i ∈ S1; j ∈ S2.

3. Add edge (i, j) to the tree. Move j from S2 to S1.

4. If S2 is now empty then halt, the tree is built
Else repeat from step 2.

This algorithm always �nds the MST. It take m2 time (or better).
If we add a constraint, e.g. (A,E) and (A,B) cannot both be in the MST, the

greedy algorithm may give an infeasible solution.
If the edges are directed then the greedy algorithm fails.

9.1.2 Machine Sequencing

One machine; n jobs; Job i takes Pi to complete; On completing job i there is
a penalty of CiTi (where Ci is a positive number and Ti is the time that job i
completes). Find a schedule (permutation of jobs) with minimum total penalty.

Greedy algorithm: At each step choose job i with smallest Ci

Pi
.
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9.2 Heuristic Algorithms

Some problems have no Greedy Algorithm which can �nd optimum solutions, but
some can be solved almost optimally in a similar way.

9.2.1 Knapsack Problem

Maximize Z =
∑n

j=1 cjxj

ST
∑n

j=1 ajxj ≤ b
Where xj are binary decision variables; cj is the bene�t of j being in the knap-

sack; aj is the weight of object j; b is the capacity of the knapsack.
A greedy algorithm: add object of greatest ci

ai
. This is not guaranteed to �nd

the optimal solution, but is usually okay. It is called a Heuristic Algorithm.
It can sometimes be proven that a heuristic algorithm gives solutions which are

close to optimal (say within a percentage).

9.3 Branch and Bound

IP solvers usually use the Branch and Bound algorithm. Lindo does.
The approach is similar in concept to that of propagation and backtracking in

Constraint Programming. Branch and bound uses Relaxation and backtracking.
Say we have a MIP. Say we relax it by ignoring the integrality constraints:

Replace x ∈ {0, 1} with 0 ≤ x ≤ 1.
Then we can apply Simplex to get a LP solution. Do this at every node in the

search tree - when we set x to zero or to one. Backtrack if the Simplex solution is
not better than the best solution found so far.

This approach relies on the fact that the optimal solution can never be improved
by adding restrictions.

Solvers can also generate additional constraints (cutting planes) which can make
a huge di�erence in e�ciency. Compared to the situation in the 1980s, and taking
hardware advances into account, branch and bound algorithms are now about two
million times more e�cient. So many previously intractable problems are now in
reach.

Other relaxations: We may be able to ignore some constraints to get a relaxation
that can be solved by a greedy algorithm.

For example in the TSP, if we ignore the sub-tour elimination constraints we get
the assignment problem (assign each city to another, minimizing the cost). This
can be solved in polynomial (n3) time.

9.4 Dynamic Programming (DP)

Invented by Richard Bellman in 1950 at the Rand corporation.
Idea: In a recursive problem, we may make the same recursive calls many times.

By remembering the results we may speed up �nding the overall solution.
For example, �nding the Fibonacci Numbers (intuitively we add the previous

two numbers in the series to get the next one): 1, 1, 2, 3, 5, 8, 13, . . .
A recursive program:

int fib(int f) {

if (f == 1 || f == 2) return 1;

else fib(f - 1) + fib(f - 2);

}

This very slow (exponentially slow).
The intuitive method is much faster (linear).
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9.4.1 The Change Problem

Find minimum number of coins adding up to some amount. For euro, dollar, etc.
a greedy algorithm works:

• Choose biggest coin that is not greater than the amount and then subtract
that from the amount; repeat until amount is zero.

For some currencies - with di�erent coin denominations, this greedy algorithm fails.
For example, in 1875 the coins in the US currency were: 1c, 5c, 10c, 20c, 25c.

How many coins needed to make up 40c?: Greedy algorithm gives an answer of
(25c, 10, 5c). The best solution is (20c, 20c).

Suppose that the amount wanted is 77c and the coins available are worth 1c, 3c
and 7c.

The answer must be one of these three possibilities:

1. 1c + best 76c solution.

2. 3c + best 74c solution.

3. 7c + best 70c solution.

These contain recursive calls. To calculate the number of calls:

number(m) = min


number(m− 1) +1
number(m− 3) +1
number(m− 7) +1

The could be written directly as a program but it would be very slow. It will
actually return the solution for number(20), for example, billions of times. It is
exponentially slow.

DP Approach: Solve the problem for all amounts up to 77.
First solve the problem for small amounts:

Amount Coins Number of Coins

1 1 1
2 1,1 2
3 3 1
4 3,1 2
5 3,1,1 3
6 3,3 2
7 7 1

Now for the amount 8 the answer is:

• either best 7c solution + 1c

• or best 5c solution + 3c

• or best 1c solution + 7c

Amount Coins Number of Coins

8 1,7 2

Continue calculating values up to 77c.
Complexity is linear in amount.
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10 Lecture 19 February 2007

10.1 Dynamic Programming

10.1.1 Manhattan Tourist Problem

Maximize total attractions in a walk across a grid like New York City.

Figure 13: Manhattan Tourist Problem

Find longest path (in terms of edge weightings).
Could use IP, but it would take exponential time to run.
Could use a Greedy Algorithm (e.g. always take the biggest weighted edge from

the current node - this gives a total path weight of 23, but there are longer).
DP solves it quickly and optimally: Find longest path from start to all other

nodes.
Label every node with the length of the longest path to it.

Figure 14: Manhattan Tourist Solution
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At each step choose a node whose predecessors are already labelled with their
longest path value.

Longest path problems on arbitrary graphs (Directed Acyclic Graphs) can always
be solved in this fashion.

Calculate maximum of those labels and edge weight.
Principle of Optimality : The optimal solution at each stage does not depend on

previous decisions (only on the current situation).

10.1.2 Edit Distance

We have two strings of symbols: How similar are they?
We could use the Hamming Distance: In how many places do they have a

di�erent symbol? E.g. ABCDE and AXCDY have distance 2.
But ATATATAT and TATATATA di�er in every single position. So they are

maximally di�erent under Hamming Distance, but are really closely related.
How many �edits� does it take to transform one into the other? Find minimum

Edit Distance between strings.
Edits:

Substitution Replace one symbol by another.

Deletion Delete a symbol.

Addition Add a symbol

E.g. TGCATAT and ATCCGAT.

5 steps 4 steps

TGCATAT Delete last TGCATAT Add front
TGCATA Delete last ATGCATAT Delete T
TGCAT Add front ATGCAAT Substitute
ATGCAT Substitute ATGCGAT Substitute
ATCCAT Add G ATCCGAT
ATCCGAT

Algorithm:
Let [] be the empty string.
Let [s|c] be String s followed by symbol c.
Base cases: dist ([] []) = 0; dist (s, []) = dist ([] , s) = |s|.
Recursion:

dist ([s1|c1] , [s2|c2]) = min


dist (s1, s2) +penalty(c1, c2)
dist ([s1|c1] , s2) +1
dist (s1, [s2|c2]) +1

penalty(c1, c2) = 0 if c1 = c2 and 1 if c1 6= c2.
A recursive program in this form would take exponential time. DP just �lls in

a table from small strings to large ones and is very fast.

11 Lecture 22 February 2007

11.1 Dynamic Programming

11.1.1 Longest Common Sub-sequence

Given a sequence: ABCDE; a sub-sequence of it is: BDE. A sub-sequence is not
necessarily continuous, but the symbols are in the same order.
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Problem: Find longest sub-sequence in two strings.

E.g. ATCTGAT and TGCATA. A possible answer is TCTA.

Notation: Let the two strings be V = V1 . . . Vn and W = W1 . . .Wm. Let Sij be
the length of the sub-sequence using Vi . . . Vj and Wi . . .Wj .

Recursive method:

Sij = max


Si−1,j

Si,j−1

Si−1,j−1 + 1 if Vi = Wj

Base Cases: Si0 = 0; S0j = 0.
Compute S11, S12, S21, S22, . . .

The di� command in Linux uses this method. It is very fast. A Text Editor
which refreshes only those parts of the screen which it needs to following a small
change can bene�t from this calculation also.

11.1.2 Sequence Alignment

Align as much of two strings as possible. This is the same as the longest path
problem. E.g.:

AB-CA-D...

A-DCAA-...

Terminology: A column with the same symbol is a match; One with a di�erent
symbols is a mismatch; One with a space (gap) is an indel; One with a space n
the top row is an insertion; One with a space on the bottom row is a deletion.

Taking the strings

AT-GTTAT-

ATCGT-A-C

These can be represented by

0122345677

0123455667

These numbers are how many symbols from each string have been used so far in
the alignment. It is merely a di�erent way of representing the alignment. At each
step take a symbol from the �rst string, or from the second, or both.

Think of the columns as coordinates (x, y) in a grid.
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Figure 15: Edit Graph

Scoring diagonals with weight 1 and all others with weight zero. Apply a DP
longest path algorithm. Could use negative weights to prevent gaps. This edit
graph allows mismatches, but we could delete those edges.

Answer:

A T - G T T A T -

A T C G T - A - C

↘ ↘ → ↘ ↘ ↓ ↘ ↓ →

Biologists often use a scoring matrix based on biological knowledge.

11.1.3 Local Alignment

Find the best alignment of the best substring.
A substring is part of a string taking consecutive symbols. For example in string

ABCDE, a substring is CDE (BDE is a sub-sequence but not a substring).
Find two substrings that have the best possible alignment.
We could try all pairs of substrings and apply DP. This would be slow.
Better is to modify out Edit Graph: Add edges with weight zero from (0, 0) to

all other nodes and from all each node to (n, m).
The longest path in the new Edit Graph is the optimal local alignment.

11.1.4 Multiple Alignment

Align more than two strings.
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In the Case of three strings the Edit Graph looks like a cube. The number of
nodes increases exponentially and soon becomes too high to be practical. DP works
up to seven or so strings. This problem is known as �The curse of dimensionality�.

In practice we can use progressive alignment : Align the �rst two strings and then
align the next with that result and so on. This will not give optimum results. Best
results are obtained by aligning the most similar strings �rst and aligning remaining
strings in order of similarity.

A product which does this (called CLUSTALW) was invented at UCC.

11.1.5 Longest and Shortest paths

Dijkstra algorithm �nds the shortest paths.
In the following algorithm, u := Extract_Min(Q) searches for the vertex u in

the vertex set Q that has the least d[u] value. That vertex is removed from the set
Q and returned to the user.

1 function Dijkstra(G, w, s)

2 for each vertex v in V[G] // Initializations

3 d[v] := infinity // Known distance function from s to v

4 previous[v] := undefined

5 d[s] := 0 // Distance from s to s

6 S := empty set // Set of all visited vertexes

7 Q := V[G] // Set of all unvisited vertexes

8 while Q is not an empty set // The algorithm itself

9 u := Extract_Min(Q) // Remove best vertex from priority queue

10 S := S union {u} // Mark it 'visited'

11 for each edge (u,v) outgoing from u

12 if d[u] + w(u,v) < d[v] // Relax (u,v)

13 d[v] := d[u] + w(u,v)

14 previous[v] := u

Is �nding the shortest path no just the reverse of �nding the longest path? Not
quite.

Dijkstra allows cycles in the graph as well as working for undirected graphs, but
cannot handle negative weights.

Dijkstra is very fast, but DP is faster if there are no cycles in the graph. DP
algorithm can also be extended to other problems.

11.1.6 Knapsack problems by DP

Maximize bene�t: Σn
j=1cjxj

ST Σn
j=1ajxj ≤ b

To solve this by DP, solve it for items 1 . . . j (j ≤ n) and also di�erent Knapsack
sizes v ≤ b (we assume b is an integer).

Find Zvj for j = 1 . . . n and v = 1 . . . b.

Zvj = max

{
Zvj−1 (don′t pack item j)
Zv−aij + cj (do pack item j)

Base cases: Zv0 = 0; Z0j = 0.
Algorithm

For v = 0 to b
Zv0 = 0

For i = 0 to n
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Z0i = 0
For v = 1 to b
For j = 1 to n

Zvi = Max(Zvj−1, Zv−aij + ci)
Return Zbn

Run-time is O(bn) but Knapsack problem is NP-hard (or takes exponential time. It
takes exponential time in its input b and n. To input b we need some bits. Size of b is
exponential in its number of bits. This is known as pseudo-polynomial complexity:
depends on a numerical value of input.

Best way of solving Knapsack problem? :

• If b is quite small (and an integer) the DP.

• If b is large (or continuous) use branch and bound (MIP).

• If time is short then a Greedy Algorithm is okay.

• A randomised algorithm can get better and better solutions as time increases
(an anytime algorithm).

Note In the 0/1 Knapsack problem each item is either packed or it is not (as in
all examples hitherto). Using integer xi allows several of each item. Can use
DP.

11.1.7 Dynamic Programming notes

Very good, but su�ers from the curse of dimensionality.
May be hard to �nd a recursion that obeys the principal of optimality.
Forward and backward recursion: we can start from either the source or sink in

each problem.
There are approximate versions of DP, such as Progressive Alignment, Neuro-

DP, etc.
Stochastic problems: Bioinfomatics, Control Theory etc.
The constraint Based approach of Memoisation is similar in principal to DP.
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12.1 Metaheuristics

Metaheuristics includes: Randomised Algorithm; Greedy Algorithms; Evolutionary
Computation; Ant Colony Optimisation; Simulated Annealing; Tabu Search; Swarm
Intelligence...

Often the most practical way of solving problems.

12.1.1 Background and Nomenclature

Search space of states; Objective Function gives a real value for each state; Neigh-
bourhood - the neighbours of a state can be reached by one local move. E.g.
(x = 1; y = 1; z = 0) → (x = 0; y = 1; z = 0) is a local move.

We could let a local move be two changes or moves. In the Travelling Salesman
Problem a local move could be changes routes between several cities.

Local Minimum: A state whose neighbours have higher objective function values
(assuming we are minimizing).

Global Minimum: A state with the least objective function value.
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Figure 16: Example Objective Function for a single variable

Hill Climbing: Follow the local gradient. Good idea, but may become trapped
in a local minimum.

Could use random restarts: Start from a random state and use Hill Climbing
(Gradient Descent) to a minimum; Keep a record of the best solution found so far.

Plateaus:

Figure 17: Plateau

Allow neutral moves (randomly pick among equally good choices).

Restarts can be ine�cient.

Figure 18: Small target
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There may be only a small chance of restart landing on the basin of attraction
of the Global Minimum.

One answer is noise. For example, follow the local gradient with a probability
of 0.9 otherwise make a random local move.

We need algorithms which can deal with di�erent topologies.

12.1.2 Intensification v Diversification

Deterministic v Random
We need a compromise between these two extremes. Some algorithms:

Extreme Intensi�cation Greedy Hill Climbing - always follow the local gradient.

Extreme Diversi�cation Uninformed random picking - choose states at random.

Compromises:

Uninformed Random Walk (too diverse) - choose random neighbour.

Greedy Hill Climbing with random restarts or with Noise.

12.1.3 TSP Example

(Traveling Salesman Problem)
A state is a tour of the cities.
Objective function is the total distance travelled.
Local Moves: Take some subset of cities and rearrange the order of visits.
2-exchange: remove two edges and add two new ones.

Figure 19: 2-exchange in TSP

k-exchange: remove k edges and add k new ones to form a new tour.
k-opt move: pick the best new edges.
Typically k is 2 or 3.
These methods can still reach a local minimum.

12.2 Stochastic Local Search

Stochastic usually just means random, but in Optimisation it often refers to max-
imising the probability of success.

Maintain a current state and make random moves to new states.
Randomized Hill Climbing:
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S ← a random state

while terminate(s) == false

U ← random(0,1)

if (U ≤ P)

S ← a random neighbour of S

else

S ← best neighbour of S

return S

P is the random walk parameter and controls Noise. E.g. P = 0.1

13 Lecture 1 March 2007

13.1 Probabilistic Hill Climbing

Probability of making a bad move depends on how bad the move is.
Algorithm (goal is to minimize f(S)):

S ← a random state

while terminate(S) = false

u ← random(0,1) //random real between 0 and 1

S′ ← a random neighbour of S

if f(S′) ≤ f(S) or u ≤ e
(f(S)−f(S′))

T //Metropolis condition

S ← S′

return S

T is called the temperature, greater temperature allows greater bad moves.
This algorithm is also called Constant Temperature Annealing.

Annealing (metallurgy), a heat treatment that alters the micro structure of a
material causing changes in properties such as strength and hardness.

13.1.1 Simulated Annealing

Similar to previous method - allow temperature to vary.
Algorithm (goal is to minimize f(S)):

T = T0

S ← a random state

while terminate(S) = false

do k times

u ← random(0,1) //random real between 0 and 1

S′ ← a random neighbour of S

if f(S′) ≤ f(S) or u ≤ e
(f(S)−f(S′))

T //Metropolis condition

S ← S′

T = αT
return S

A termination condition might be based on T . E.g. T ≤ 0.00001.
α is a number between 0 and 1 (say 0.95).
k is some integer which may increase at each iteration of T .
It has been proved that there is a cooling schedule for each problem that �nds

the optimum solution - but we don't know what it is. In practice we may allow
reheating.
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13.2 Tabu Search

Pick the best neighbour that is not forbidden.

Avoids small loops by using memory of its last few moves. But comparing entire
states is expensive (Could try storing hashes of states). Instead we check components

of states. For example if a local move changes a variable then don't reverse that
change for several iterations. This is much cheaper.

However this Tabu condition prevents states which haven't been tried. Take the
example of some binary variables:

Allowed Var1 Var2 etc.
√

0 0 ...√
1 0 ...√
1 1 ...

× 1 0 ...

Components are stored in a Tabu List. This contains the last t moves. t is the
Tabu Tenure.

Can add Tabu to other algorithms. A simple version is: make the best local
move that isn't forbidden by the Tabu condition.

If the Tabu Tenure is too small then we won't escape from deep local minima.
This is called Search stagnation and can be hard to spot.

If t is too large the search is too restricted and we might miss the optimal
solution.

Variants:

• Robust Tabu Search - t is chosen randomly from a list of numbers; also forces
moves not made for a long time.

• Reactive Tabu Search - t changed adaptively depending on recent search his-
tory.

� If a state occurs twice then it assumes stagnation is occurring and in-
creases t

� else decreases t.

� Can also revisit elite solutions (best ones found so far) and restart search
from there but head in a di�erent direction.
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14.1 Dynamic Local Search

This is one of the most e�ective methods currently known.

Dynamically change the objective function during the search. Transform local
minima to non-minima.

Attach a weight to each search component. A search component is, for example,
a TSP edge, a single variable or constraint).

Modify the objective function to include all these weights.

When trapped in a local minimum, increase the weights of those components
involved in the local minimum. Eventually the local minimum becomes a hill and
the search moves o� it.
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Figure 20: Weight Change

To avoid very large weights periodically decrease all weights. For example by
multiplying them by 0.9. This is called smoothing.

An algorithm based on this approach is called Guided Local Search. It can be
used as an add on to local search algorithms described previously (e.g. Simulated
Annealing).

There are various ways that the weights might be adjusted: Additive (where a
constant is added); Multiplicative (where the weight is multiplied by a constant,
e.g. 1.1).

14.2 Hybrid approaches

No algorithm is best for all problems. �No free lunch� theorem: For every algorithm
there is a problem for which it is the worst.

14.2.1 Iterated Local Search

Uses two types of local move.

1. For reaching good states quickly (high intensi�cation - quite greedy).

2. For escaping minima (high diversi�cation).

14.2.2 GRASP

Acronym for Greedy Randomised Adaptive Search Procedure.
Steps:

1. Design a Greedy algorithm for the problem.

2. Use it to �nd a good �rst solution.

3. Use local search to improve the solution found.

4. Restart with a slightly randomised version of the Greedy algorithm.

It is quite expensive to restart but it often pays o� (gets good results).

14.2.3 Adaptive Probing and Squeaky-wheel Optimisation

Like GRASP but use weights that are adjusted between restarts to pinpoint cause
of failure to �nd optimal solution.
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Figure 21: Graph Colouring

14.3 Graph Colouring

Assign �colours� to each vertex in a graph such that no two vertexes joined by an
edge have the same colour.

This seemingly abstract problem has many real applications: Timetabling, Schedul-
ing, Radio Frequency allocation, Pattern Matching in AI, etc.

Clique of size three needs at least three colours.
Several Local Search algorithms have been developed for the Graph Colouring

problem.

14.3.1 Tabu Search

Start by colouring each vertex randomly.
Local move: change the colour of a single node.
Start with k colours, then make local moves until a k-colour solution is found.

Then look for a k − 1 solution. Repeat until no smaller solution is found.

14.3.2 Iterative Greedy

Start with no nodes coloured.
Colour nodes one by one, each time trying to reuse a colour.
If it not possible to reuse a colour then use a new one.
Restart using a node ordering that guarantees we don't need to use more colours

- we may need fewer.

14.3.3 Impasse

A search state is a currently coloured subset of the nodes. The nodes that can't be
correctly coloured is the impasse set.

Looks for k-colouring, then decreases k.
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15.1 Probabilistic Approximate Completeness

PAC property: The longer a Local Search, with this property, is run the more likely
it is to �nd the optimal solution.

The probability of �nding the optimal solution tends towards one as time tends
toward in�nity. The search converges on the optimal solution.
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Some algorithms may be trapped forever in a local minimum. These are called
essentially incomplete.

15.1.1 Random Picking

Algorithm cannot be trapped. Has a probability 1
s (where s is the number of possible

search states) of �nding the optimum solution at each iteration.
1
s > 0 so random picking has the PAC property.

15.1.2 Randomised Hill Climbing

Algorithm:

s← a random state

while termination(s) = false
u← random(0, 1)
if u ≤ p

s← a random neighbour

else

s← the best neighbour

return s

Proof of PAC:

Figure 22: Distance from Optimum

De�ne distance between states as the number of local moves between them.
Consider any state which id some distance d from an optimum solution.
Prove that there is a non-zero chance that the next move reduces d.
At least one neighbour of s will be closer to the optimum.
With probability p the algorithm chooses a random neighbour, which could be

one closer to the optimum.

15.1.3 An Essentially Incomplete algorithm

s← a random state

while terminate(s) = false
s← a random choice of its two best neighbours

return s

This is not PAC.

35



15.2 Genetic Algorithms 16 LECTURE 12 MARCH 2007

Figure 23: Essentially Incomplete

Suppose that the search space has three states s, s′, s′′ that are all neighbours
of each other, but also have other neighbours. They are better than all their neigh-
bours.

The algorithm will always choose one of s, s′, s′′ to move to from one of these.

15.2 Genetic Algorithms

Classic GA: Genes are bits.
More recent GAs: Use integers, reals, symbols or programs.
Mutation and Recombination: are the genetic operators.
Fitness function: operates on strings/genotypes/organisms.
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16.1 Genetic Algorithms

If there are only a few genes then it is possible to try all combinations. For it to be
worthwhile to use a GA there needs to be at least 30 genes involved in the problem.

GAs can solve huge problems (e.g. the human genome solving the problems of
survival and reproduction).

Start by creating a population of chromosomes (strings of genes) or genotypes.
Each chromosome has a �tness (de�ned by some function). If the evaluation func-
tion is f then the �tness is often de�ned as fi

fmean
. Alternatively the algorithm could

use �tness ranking (after sorting chromosomes into �tness order).

16.1.1 Recombination

1-point Crossover is the simplest (and seems to be what occurs in nature).

Parents Children

00000000 11100000
11111111 00011111

2-point Crossover:

Parents Children

00000000 00110000
11111111 11001111
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Uniform Crossover: Randomly choose a parent for each gene.

Parents Children

00000000 01101100
11111111 10010011

Good chromosome design puts closely related genes close together, this makes
recombination less likely to break up good combinations of genes. But Uniform
Crossover makes random decisions at each gene, so all designs are equally good.
Uniform Crossover is more disruptive that the other methods.

An advantage of Uniform Crossover. Suppose parents are very similar, e.g.:

Parents

10011101
00010001

Consider gene di�erences only:

Parents

1***11**
0***00**

These are known as reduced surrogates.
If 1-point Crossover is used than there are four ways of generating the same

o�spring:

Parents

1***00**
0***11**

But only one way of generating:

Parents

1***10**
0***01**

So 1-point Crossover is biased. Uniform Crossover is not biased (it is more fair).
However, we can use 1-point Crossover on surrogates to make it fair.

16.1.2 Mutation

Replace a single gene's value.
Premature Convergence

If all chromosomes have 0 in gene 15 (for example) the crossover can never
produce a 1 in gene 15.

Mutation is necessary to avoid this.
Mutation is also a hill-climber. If we use only mutation we're doing local search

on a population of states. This strategy may beat crossover for some problems,
especially on a small population.

16.1.3 Non-binary alphabets

Early GAs used {0,1}. This is easier to analyse.
Bigger alphabets may be more natural. E.g. �oating-point numbers can be

represented by bits, but it may be easier to use �oating-point genes.

37



16.2 Evolutionary Computation 17 LECTURE 15 MARCH 2007

16.2 Evolutionary Computation

Some Common methods adopted, under di�erent names, in di�erent �elds of Science
have been brought together as Evolutionary Computation.

1. Evolutionary Strategies (ES)

2. Evolutionary Programming (EP)

Common system:

P ← some initial population

Evaluate(P )
while termination == false

P ′ ← Recombination(P )
P ′′ ←Mutation(P ′)
Evaluate(P ′′)
P ← Select(P ′′)

Di�erent versions of this approach have been adopted.

• (µ + λ)-ES: µ parents produce λ o�spring, who are added to the population.
Select the best µ to be the next generation.

• (µ, λ)-ES: O�spring replace their parents.

• The Genitor Algorithm: Selects 2 parents, generates 1 o�spring which replaces
the least �t member of the entire population. This is a steady-state GA. Keeps
population ranked by �tness.

• The CHC Algorithm: Perform Recombination; Take n best unique chromo-
somes (e.g. n = 100) from the parents and o�spring. Random parent selection.
Uses Uniform Crossover. If copies (clones?) occur then apply cataclysmic mu-
tation (a lot of mutation).
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17.1 Parent Selection

Choose �ttest and choose randomly are two strategies.

17.1.1 Tournament Selection

Choose a random subset of the population (of size k). k is called the tournament
size.

1. Choose the best chromosome from this subset with probability p.

2. Choose the second-best with probability p(1− p).

3. The third with probability p(1− p)2.

4. and so on

This chooses parents quite randomly but with a bias toward the �ttest.
Can choose k and p to alter the bias towards the �ttest individuals.
This approach is useful for problems where �tness cannot be computed, but

chromosomes can be compared (and ranked).
Tournament selection can be parallelised.
We may allow the �ttest chromosome to survive into the next generation. This

is called Elitism Selection.
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17.2 Memetic Algorithms

The term Memetic is from The Sel�sh Gene by Richard Dawkins.
Apply local search or hill-climbing to a chromosome before placing it in the

population. GAs are often quite slow and this can speed things up.
This approach is also called Hybrid GAs or Genetic Local Search.
Memetic algorithms can also use backtrack search.

17.2.1 Lamarkian and Baldwinian Learning

Lamark: Acquired characteristics can be inherited (this is false in nature). MAs
use Lamarkian Learning.

Baldwin: Suggested that this happens indirectly. That there is evolutionary
pressure for o�spring to acquire characteristics. i.e. to learn more quickly.

In GAs - don't alter the chromosome, but reduce the �tness function more if
greater e�ort is needed to improve it (Baldwin E�ect).

17.3 Indirect GAs

A chromosome can represent instructions on how to �nd a solution. To �nd the
�tness, we execute these instructions using a decoder.

17.4 Case Study: TSP

Design good operators: O�spring should usually have similar �tness to parents.
Bad operators produce Lethals - much less �t o�spring.

TSP is a permutation problem ⇒ �nd a good permutation.

17.4.1 Representations of Tours

Path Representation Each city is a number e.g. (1..100) and a tour is a list of
these numbers (6, 8, 91, 3...). This is the most obvious method.

Binary Representation Replace integers by bits. e.g. (4, 1, 3, 2, 5) becomes
(100, 001, 011, 010, 101). One problem with this approach is that invalid tours
can emerge which include non-existent cities.

Ordinal Representation Again a list of integers (1..n), where n is the number of
cities. The ith number on the list is in the range 1 . . . n− (i + 1). Start with
a list to use as a reference L = (1, 2, 3, 4, 5).
To represent (4, 1, 3, 2, 5) use the position in L to represent the city. The �rst
city is 4 which is in position four in L so represent it by 4 and remove it from
L.
The tour (4, 1, 3, 2, 5) is represented by (4, 1, 2, 1, 1).
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18.1 Case Study: TSP, continued

Classical operators work badly on the path representation. E.g. (4, 1, 3, 2, 5) may
mutate to (4, 2, 3, 2, 5), which is not a permutation.

The Ordinal representation works with the classical operators: Never gives an
illegal chromosome, but it gives poor results.

The best results have been obtained by using new operators on the straightfor-
ward path representation.
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18.1.1 New Crossover Operators

PMX (Partially Mapped Crossover)
Choose two cutpoints randomly:

1, 2, 3, |4, 5, 6, |7, 8
3, 7, 5, |1, 6, 8, |2, 4

Swap contents between those points:

1, 2, 3, |1, 6, 8, |7, 8
3, 7, 5, |4, 5, 6, |2, 4

These are the mapping section. De�ne the mappings 1↔ 4, 6↔ 5, 8↔ 6.
Note invalid values outside of mapping section:

x, 2, 3, |1, 6, 8, |7, x

3, 7, x, |4, 5, 6, |2, x

Replace values at x positions according to the mappings. May need to iterate this
process several times for each value:

4, 2, 3, |1, 6, 8, |7, 5
3, 7, 8, |4, 5, 6, |2, 1

The positions of many cities are unchanged: O�spring may have similar �tness
to parents.

CX (Cycle Crossover)
Create o�spring in which about half the cities take their position from one of

the parents.
Basic idea:
Each gene comes from one parent together with its position.
Informal procedure:

1. Make a cycle of genes from P1 in the following way.

(a) Start with the �rst gene of P1.

(b) Look at the gene at the same position in P2.

(c) Go to the position with the same gene in P1.

(d) Add this gene to the cycle.

(e) Repeat step b through d until you arrive at the �rst gene of P1.

2. Put the genes of the cycle in the �rst child on the positions they have in the
�rst parent.

Worked Example:
1, 2, 3, 4, |5|, 6, 7, 8
2, 4, 6, 8, 7, 5, 3, 1

Choose random starting point (position �ve in the �rst parent in this case). Add
it to the o�spring (., ., ., ., 5, ., ., .).

The city at position �ve in the second parent is 7, take value from that position
in the �rst parent and add it to the o�spring (., ., ., ., 5, ., 7, .).

The city at position seven in the second parent is 3, take value from that position
in the �rst parent and add it to the o�spring (., ., 3, ., 5, ., 7, .).

The city at position three in the second parent is 6, take value from that position
in the �rst parent and add it to the o�spring (., ., 3, ., 5, 6, 7, .).
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The city at position six in the second parent is 5, which has already been in-
cluded, this completes the cycle. The rest of the cities can be taken from the second
parent (2, 4, 3, 8, 5, 6, 7, 1).

Form other o�spring from complement of each gene, subtract each gene value
from n + 1 giving (7, 5, 6, 1, 4, 3, 2, 8).

OX1 (Order Crossover)
There is also an OX2 variant.
Try to preserve the relative ordering of cities in o�spring.
Choose a subtour of one of the parents and preserve the order of that subtour

in the other parent.
Choose two cutpoints randomly:

1, 2, |3, 4, 5, |6, 7, 8
2, 4, |6, 8, 7, |5, 3, 1

Copy subtours into o�spring:

., ., |3, 4, 5, |., ., .

., ., |6, 8, 7, |., ., .

Starting from the second cutpoint, copy the cities from the other parent (in
order), leave out any cities already in that o�spring:

8, 7, |3, 4, 5, |1, 2, 6
4, 5, |6, 8, 7, |1, 2, 3

18.1.2 New Mutation Operators

DM (Displacement Mutation)
Move a subtour to a new position:

1, 2, |3, 4, 5, |6, 7, 8
1, 2, 6, 7, |3, 4, 5, |8

EM (Exchange Mutation)
Pick two cities and exchange them.
SIM (Simple Inversion Mutation)
Pick two cutpoints randomly and reverse the order between those points.

18.2 Case Study: Knapsacks

Maximize Z = Σn
j=1cjxj (cj = bene�t)

ST Σn
j=1ajxj ≤ b (aj = weight; b = capacity).

Method 1 (2002)
Solutions are n bits. e.g. 1001 means pack items 1 & 4.
Z is not enough to measure �tness as some chromosomes are illegal (e.g. 1111).
Penalty functions: modify the �tness function to penalise illegal chromosomes

for their infeasibility.
Fitness: Σn

j=1cjxj − penalty(x1, . . . , xn)
The penalty is {

0 if Σn
j=1ajxj ≤ b√

(Σn
j=1ajxj)− b if Σn

j=1ajxj > b

The Genetic Algorithm uses: 1-point crossover, elitism, point mutation, popu-
lation size 30, mutation rate 0.01 and crossover rate 0.8.
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19.1 Case Study: Knapsacks (continued)

Method 2 (1994)
Multiple Knapsack problem. Same chromosome representation as method 1.

Di�erent penalty function.
GA: Population 50; Mutation Rate 1

n ; crossover rate 0.6; proportional selection;
1-point crossover.

If too many chromosomes are illegal, replace some by legal ones found by a
greedy heuristic.

Method 3 (2003)
Integer values, many copies of an item may be packed. Reduce to binary genes,

bit representation of integers. Instead of a penalty function they repair illegal
chromosomes by removing items until capacity is not exceeded. Remove items
based on their pro�tability (bene�t divided by weight).

GA: Stead state; Uniform crossover; Tournament selection; Population 100; Mu-
tate 2-bits per chromosome; Remove duplicate chromosomes.

Method 4 (2001)
Transposition, move a substring from one parent and copy it to a position in

the other. Can be done with only one parent - asexual reproduction.
Method 5 (1998)
Problem-space exploration. GA generates a starting point for a greedy algorithm

- choose items with greatest pro�tability �rst. To get di�erent solutions add small
numbers to the pro�tabilities.

Use GA to generate these numbers. Numbers are in a range ±e, where e is the
di�erence between the smallest and largest pro�tabilities.

GA: Elitist; Generational; Population 100; Crossover rate 0.9; Mutation rate
0.01; Proportional Selection.

Method 6 (Steve's own)
Evolve a permutation as for TSP (order of adding items). Fitness computed by

adding items in that order, skipping items that would exceed capacity.

19.2 Other topics

Not covered in this course:

• Newton's Method.

• Sensitivity Analysis - Tight and Slack constraints.

• Neural Networks.

• Massive Parallelism.

• DNA Computing.

• Quantum Computing
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20.1 Exam

Five questions, answer them all.
There were six main topic areas in the course. Here they are broken down into

what needs to be known for the exam and what does not.
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20.1.1 Linear Programming

Know Terminology; How to model problems; Graphs (of solutions - how to draw);
When is LP an approximation to the real world; Approximation (variables
should be integer, coe�cients may be estimates, non-Linear).

Don't need Unimodularity; Simplex; Speci�c models.

20.1.2 Integer Programming

Know Terminology; Modelling (logical constraints, extra variables, big-M).

Don't need Speci�c Models; Relaxation; Branch and Bound.

20.1.3 Dynamic Programming

Know Fibonacci; Change problem; Longest Path; 2-way alignment; Longest Com-
mon Subsequence; Knapsack problems; DP and Dijkstra.

Don't need Edit distances; Local alignment; Multiple alignment, Stochastic prob-
lems.

20.1.4 Local Search

Know Terminology; Escaping Local Minima (restart, noise, Tabu, Dynamic Local
Search - changes objective function); Algorithms (Greedy Hill Climbing etc.);
Probabilistic Approximation Completeness.

Don't need Robust Tabu; Reactive Tabu; Guided Local Search; GRASP; Graph
Colouring Algorithm.

20.1.5 Genetic Algorithms

Know Terminology; Crossover (1-point, 2-point, uniform, PMX, CX, OX); Muta-
tion (Classical, displacement, exchange, simple inversion); Representations of
problems (e.g. TSP - binary, path, ordinal).

Don't need Genitors; CHC; Evolutionary Strategies; Evolutionary Programming;
Mimetic Algorithms; Tournament Selection, Indirect GA (where decoder is
used to transform chromosome into solution); Knapsack Case Study.

20.1.6 Greedy Algorithm

Know How do they work; Why are they useful (fast and give reasonable solutions);
Can they solve all optimisation problems (no).

Don't need Proofs; Particular algorithms.

[Skip OR]

20.1.7 Example Questions

LP Model a problem. Show graphically how it works and the solution found.
Explain why LP may be unrealistic.

IP Model a problem. Discuss big M constraints. De�ne logical constraints.

DP Model a problem as a longest path. Use dynamic programming to solve by
hand (change problem?). Remember that graphs may not be regular grids.
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LS Describe several algorithms (Probabilistic Hill Climbing, Simulated annealing
etc.). Prove if PAC or not.

GA Model problem is di�erent ways. Compare di�erent operators (e.g. crossover,
mutation); Alphabet (values genes can take); Illustrate di�erent operators
with examples.

Greedy Invent a Greedy algorithm for a problem. It doesn't have to be very good,
just greedy.
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