
CS5202 Constraint-Based Programming

Paul Ahern

May 31, 2007

Abstract

Notes from lectures.

Contents

1 Key Facts to Know 3
1.1 Exam . 3

2 Lecture 28 September 2006 3
2.1 Constraints . 4
2.2 Constraint Satisfaction Problem (CSP) 4

3 Lecture 29 September 2006 4
3.1 Basic Concepts . 4

3.1.1 Formal De�nitions . 5

4 Lecture 5 October 2006 5
4.1 Examples . 5

4.1.1 A Coins Problem . 6

5 Lecture 6 October 2006 6
5.1 OPL Studio . 6
5.2 n-Queens program . 6

6 Lecture 12 October 2006 6
6.1 Projections . 6
6.2 Equivalence of CSPs . 7
6.3 Solved and Failed CSPs . 7
6.4 Basic Framework for Constraint Programming 7

6.4.1 Preprocess . 8
6.4.2 Happy . 8
6.4.3 Atomic . 8
6.4.4 Split . 8
6.4.5 Proceed by Cases . 9
6.4.6 Constraint Propagation . 10
6.4.7 Constraint Propagation Algorithms 10

7 Lecture 13 October 2006 11
7.1 Proof Theoretic Framework . 11

7.1.1 Proof Rules . 11
7.1.2 Domain Reduction Rules . 11
7.1.3 Transformation Rules . 11
7.1.4 Introduction Rules . 11

1

CONTENTS CONTENTS

7.1.5 Derivations . 11
7.1.6 Recap . 12

7.2 Term Equations . 12
7.2.1 Terms . 12
7.2.2 Substitutions . 12
7.2.3 Uni�ers and Most General Uni�ers (MGUs) 13

7.3 The UNIF Proof System . 13
7.4 Martelli-Montanari Algorithm . 14

8 Lecture 20 October 2006 14
8.1 Linear Equations over the Reals . 14

8.1.1 Basic De�nitions . 14
8.2 Lin Proof System . 16
8.3 Gauss-Jordan Elimination Algorithm 16

8.3.1 Example . 16
8.4 Linear Inequalities over the Reals . 18

8.4.1 Fourier-Motzkin Algorithm 18

9 Lecture 2 November 2006 18
9.1 Local Consistency . 18
9.2 Proof Rules for Arc Consistency . 19

10 Lecture 3 November 2006 19
10.1 Normalised CSPs . 19
10.2 Path Consistency . 19
10.3 Path Consistency Transformation Rules 20
10.4 Directional Path Consistency . 20
10.5 Gaussian Elimination . 20

11 Lecture 9 November 2006 20
11.1 Instantiation . 20
11.2 k -consistency . 21

12 Lecture 10 November 2006 21
12.1 Projection and Joins . 21
12.2 Proof Rule for k -Consistency . 21
12.3 Strong k -Consistency . 22

13 Lecture 16 November 2006 22
13.1 4C Presentation . 22

14 Lecture 17 November 2006 22
14.1 Search Algorithms . 22

15 Lecture 23 November 2006 22
15.1 Relational Consistency . 22

15.1.1 Properties . 22
15.1.2 Proof Rules . 23

15.2 Backtrack Free Search . 23
15.3 Freuder's Theorem . 23

16 Lecture 24 November 2006 24

17 Lecture 30 November 2006 24

2

2 LECTURE 28 SEPTEMBER 2006

18 Lecture 1 December 2006 24
18.1 ARC Consistency Algorithm AC-3 24
18.2 Worked Example . 24

19 Lecture 7 December 2006 25
19.1 Binary and non-Binary Constraints 25
19.2 Hidden Transformation . 26
19.3 Dual Transformation . 26

20 Local consistency 26
20.1 Arc Consistency on Hidden Transformation 27
20.2 Arc Consistency on Dual Transformation 27

21 Lecture 8 December 2006 27
21.1 Tractability . 27
21.2 Trees . 28
21.3 Problems with Limited Interconnectivity 28
21.4 Hinge Tree Usage . 28
21.5 Tractability due to Restricted Width 28

22 Lecture 14 December 2006 29
22.1 Restrictions on the Constraint Language 29
22.2 Six Types of Functions . 29
22.3 ACI Functions . 30
22.4 Summary . 30

23 Lecture 15 December 2006 30
23.1 CSP De�nition . 30
23.2 Shaving . 30
23.3 Consistency . 31
23.4 SAC-1 Singleton Arc Consistency Algorithm 31
23.5 k -Singleton Arc Consistency . 31

24 Lecture 2 March 2007 32
24.1 Polymorphism . 32
24.2 Singleton ARC-consistency . 32

1 Key Facts to Know

1.1 Exam

1. Strong k -consistency and Freuder's Theorem.

2. Trees, unconnected components and restricted width.

3. Singleton Arc Consistency.

4. SAC-1 Algorithm.

2 Lecture 28 September 2006

The �nal exam will be in the summer examination period unless everybody agrees
to do it in January.

As usual, you are expected to demonstrate that you know what the course is all
about.

3

2.1 Constraints 3 LECTURE 29 SEPTEMBER 2006

You are allowed to bring in an A4 size cribsheet with hand-written notes. One
side of the sheet should remain empty and the sheet has to be signed by your
lecturer.

Without a signature, your cribsheet will be invalid.

2.1 Constraints

Constraints are a declarative tool for specifying, representing, solving, and
reasoning about many interesting problems occurring in computer science,
mathematics, and the real world.
Constraints were �rst used by AI researchers as a special tool for polyhedral

scene analysis.
Example applications:

• Graphics polyhedral scene analysis, GUI positioning, CAD Tool.

• Operations Research planning, scheduling, other optimization problems.

• Molecular Biology DNA Sequencing, phylogenetic trees, protein folding.

• . . .

2.2 Constraint Satisfaction Problem (CSP)

A CSP is made up of:

• n Variables x1 . . . xn

• in Domains Dx1 . . . Dxn (e.g. Boolean domain {true,false} or {1,0})

• Constraints that limit the possible values that can be taken by the variables
(e.g. (x1 ∧ x2) ∧ (x1 ∨ x3))

Example CSPs:

• Position n-Queens on a chessboard such that they do not threaten each other.

• Align sequences of DNA so as to minimize the number of mismatches.

• Scheduling problems such as assigning aircrew to planes.

• Solving the Zebra problem

3 Lecture 29 September 2006

Apt Book: pages 1-13.

3.1 Basic Concepts

Representing a given problem as a CSP is called modeling.
Note that a < b ∧ b < c and a < b ∧ b < c ∧ a < c are di�erent but equivalent

models of the same problem. In general there may be several models of the same
problem.

CSPs can be classi�ed according to the domain from which the variables take
their values. Hence integer (N), real (R), Boolean (B) and symbolic CSPs.

The notion of a variable in constraint satisfaction is similar to the notion of a
variable in logic programming. It is not similar to the notion of a variable in an
imperative programming language like C. Variables in constraint satisfaction are
more like variables in mathematics. They are placeholders for values in expressions.

4

4 LECTURE 5 OCTOBER 2006

3.1.1 Formal De�nitions

Let Y = y1, . . . , yk be a non-empty �nite sequence of variables (k > 0).
Let Di be the domain of yi, for 1 ≤ i ≤ k. To say that Di is the domain of yi

means that yi takes its values from Di.

A constraint C on Y is a subset of the Cartesian product, D1 × . . .×Dk, of the
domains of Y .

Here Cartesian product of sequence D1 × . . .×Dk is de�ned as follows:

D1 × . . .×Dk = {(v1, . . . , vk) : v1 ∈ D1, . . . vk ∈ Dk}
C is called unary if k = 1 and binary if k = 2. If k ≥ 3 then C is usually called

a higher-order constraint.

By Constraint Satisfaction Problem (CSP) we mean:

1. A �nite sequence X of variables x1, . . . , xk;

2. A domain Di for each variable xi, 1 ≤ i ≤ k;

3. A �nite set C of constraints such that each constraint is on a subsequence of
X.

Formally, we write 〈C;DE〉 for this CSP, where DE := x1 ∈ D1, . . . xk ∈ Dk.

4 Lecture 5 October 2006

Apt Book: pages 13-48.

Let 〈C;DE〉 for this CSP, where DE := x1 ∈ D1, . . . xn ∈ Dn. Furthermore,
let C ∈ C be a constraint on xi1 , . . . xik . Let m ≥ k. We say that an m-tuple
(vi1 , . . . vik) ∈ D(xj1)× . . .×D(xjm) satis�es C i� each of the following are true:

1. The sequence xi1 , . . . xik is a sub-sequence of xi1 , . . . xim ;

2. (vi1 , . . . vik) ∈ C.

An m-tuple (vi1 , . . . vik) ∈ D(xj1)× . . .×D(xjm) is called a solution of 〈C;DE〉 i�
it satis�ed each C ∈ C.

4.1 Examples

• Integer CSPs - Send+More=Money; n-Queens.

• Real-Valued CSPs - Spreadsheets; Zeros of Polynomials.

• Boolean CSPs - special instance of Integer CSPs {0..1}.

• Symbolic CSPs - Crosswords; Qualitative Temporal Reasoning; Analysis of
Polyhedral Scenes.

• Constrained Optimization Problems - Knapsack; Coins, Golomb Ruler (the
distance between each pair of ticks should be di�erent).

5

6 LECTURE 12 OCTOBER 2006

4.1.1 A Coins Problem

What is the minimum number of coins that lets you pay exactly any amount smaller
than one euro.

Use integer variables ikj
, for 1 ≤ k ≤ 99 and j ∈ {1, 2, 5, 10, 20, 50} such that

ikj ∈ D(xj). The domains are:

x1 ∈ {0..99}, x2 ∈ {0..49}, x5 ∈ {0..19},
x10 ∈ {0..9}, x20 ∈ {0..4}, x50 ∈ {0..1}.
For each k we have the constraints:

ik1 ≤ x1, ik2 ≤ x2, ik5 ≤ x5, ik10 ≤ x10, ik20 ≤ x20, ik50 ≤ x50,

1× ik1 + 2× ik2 + 5× ik5 + 10× ik10 + 20× ik20 + 50× ik50 = k.

5 Lecture 6 October 2006

5.1 OPL Studio

ILOG product implementing the Optimization Programming Language.

5.2 n-Queens program

int n < < "Number of queens: ";

range Position 1..n;

var Position pos[Position];

solve {

forall(q1, q2 in Position : q1 < q2) {

pos[q1] <> pos[q2];

pos[q1] + q1 <> pos[q2] + q2;

pos[q1] - q1 <> pos[q2] - q2;

}

};

6 Lecture 12 October 2006

Apt Book: pages 54-74.

6.1 Projections

Given: variables X := x1, ..., xn with the domains D1, ..., Dn.

Consider

• d := (d1, ..., dn) ∈ D1 × ...×Dn,

• subsequence Y := xi1 , ..., xil of X.

Denote (di1 , ..., dil) by d[Y]. d[Y]: projection of d on Y .

Note For a CSP P := 〈C;x1 ∈ D1, ..., xn ∈ Dn〉
(d1, ..., dn) ∈ D1 × ...×Dn is a solution to P i� for each constraint C of P on
a sequence of variables Y : d[Y] ∈ C.

6

6 LECTURE 12 OCTOBER 2006 6.2 Equivalence of CSPs

6.2 Equivalence of CSPs

• P1 and P2 are equivalent if they have the same set of solutions.

• CSPs P1 and P2 are equivalent w.r.t. X i�
{d[X] | d is a solution to P1} = {d[X] | d is a solution to P2}.

• Union of P1, ...,Pm is equivalent w.r.t. X to P0 if
{d[X] | d is a solution to P0} = {∪mi=1d[X] | d is a solution to Pi}.

6.3 Solved and Failed CSPs

• C a constraint on variables y1, ..., yk with domains D1, ..., Dk, so C ⊆ D1 ×
...×Dk. C is solved if C = D1 × ...×Dk.

• CSP is solved if

� all its constraints are solved,

� no domain of it is empty.

• CSP is failed if

� it contains the false constraint ⊥,
or

� some of its domains are empty.

6.4 Basic Framework for Constraint Programming

First the initial problem is formulated as a CSP (modeling). Then the generic
procedure Solve:

Solve:

VAR continue: BOOLEAN;

continue:= TRUE;

WHILE continue AND NOT Happy DO

Preprocess;

Constraint Propagation;

IF NOT Happy

THEN

IF Atomic

THEN

continue:= FALSE

ELSE

Split;

Proceed by Cases

END

END

END

Solve contains the subsidiary procedures Preprocess, Constraint Propagation, Happy,
Atomic, Split and Proceed by Cases.

7

6.4 Basic Framework for Constraint Programming6 LECTURE 12 OCTOBER 2006

6.4.1 Preprocess

Bring to desired syntactic form. Examples:

• Constraints on reals.
Desired syntactic form: no repeated occurrences of a variable.

ax7 + bx5y + cy10 = 0
ax7 + z + cy10 = 0, bx5y = z

• Boolean Constraints.
Desired syntactic form: conjunctive normal form.

(x ∨ y ∨ z) ∧ (¬x ∨ y) ∧ (x ∨ ¬z)

6.4.2 Happy

• Found a solution,

• Found all solutions,

• Found a solved form from which one can generate all solutions,

• Determined that no solution exists (inconsistency),

• Found best solution,

• Found all best solutions.

• Reduced all interval domains to sizes smaller than the required precision.

6.4.3 Atomic

Check

• whether CSP is amenable for splitting, or

• whether search �under� this CSP is still needed.

Atomic tell us when we have to start splitting. The idea is that if a CSP is "atomic"
then we can tell immediately if there is a solution or not. For example, this may be
the case if all domains are singletons.

6.4.4 Split

Split a domain

• D �nite (Enumeration)

x ∈ D
x ∈ {a} | x ∈ D − {a}

• D �nite (Labeling)

x ∈ {a1, ..., ak}
x ∈ {a1} | ... | x ∈ {ak}

8

6 LECTURE 12 OCTOBER 20066.4 Basic Framework for Constraint Programming

• D interval of reals (Bisection)

x ∈ [a..b]
x ∈ [a..a+b2] | x ∈ [a+b2 ..b]

• Split a constraint

| p(x̄) |= a

p(x̄) = a | p(x̄) = −a

C1 ∨ C2

C1 | C2

Each call to Split replaces current CSP P by CSPs P1, ...Pn such that the union
of P1, ...Pn is equivalent to P.

Split also determines which operation is to be applied next.
Some heuristics for Split, Which

• variable to choose,

• value to choose,

• constraint to split.

Examples:

• Select a variable that appears in the largest number of constraints (most
constrained variable).

• For a domain being an integer interval: select the middle value.

6.4.5 Proceed by Cases

When given a �nite number of CSPs, the task of the procedure ProceedByCases is
to recursively solve these CSPs (using Solve) until - and this depends on the task
that we're trying to accomplish - one solution, an optimal solution or all solutions
have been found.

Usually, this is done with some form of backtracking algorithm. The algorithm
regards a single non-splittable CSP as a leaf of a tree and the union of k > 1
splittable CSPs as a node of a tree with k branches, one for each of the k CSPs.

This de�nes a so-called search tree (whose solutions may be found by traversing
it). Usually (almost always) the tree is not given in advance but computed on the
�y.

Various search techniques.

• Backtracking,

� Nodes generated "on the �y".

� Nodes are CSPs.

� Leaves are CSPs that are solved or failed.

• Branch and bound,

• Can be combined with Constraint Propagation,

• Intelligent backtracking.

9

6.4 Basic Framework for Constraint Programming6 LECTURE 12 OCTOBER 2006

Figure 1: Backtracking

6.4.6 Constraint Propagation

Intuition: Replace a CSP by an equivalent one that is simpler.
Constraint propagation performed by repeatedly reducing

• domains

and/or

• constraints

while maintaining equivalence.

Projection Consider any constraint C and any domain D of variable x. The
following is a typical example of constraint propagation: Remove from D all
values for x that do not participate in any solution to C.
The idea is that if a value does not participate in any solution to C then it
cannot participate in any solution of the CSP and can therefore be discarded.
The act of removing from D all values for x that do not participate in any
solution to C is called projecting C onto x.

Resolution Rule Is the cornerstone of automated theorem proving. It is an ex-
ample of constraint propagation.
The idea is to derive new rules from a given Boolean formula in CNF. It is
hoped that the new rules tighten the domains of the variables. Let L be any
literal and L̄ its negation. The following resolution rule derives the constraint
C1 ∪ C2which does not contain the literals:〈

C1 ∪ {L}, C2 ∪ {L̄};DE
〉〈

C1 ∪ {L}, C2 ∪ {L̄}, C1 ∪ C2;DE
〉

6.4.7 Constraint Propagation Algorithms

• Deal with scheduling of atomic atomic reduction steps.

• Try to avoid useless applications of atomic reduction steps

• Stopping criterion for general CSPs: a local consistency notion. For example:
Projection rule - Take a constraint C. Choose a variable x of it with domain
D. Remove from D all values for x that do not participate in a solution to C.
Corresponding local consistency notion - Hyper-arc consistency - For every
constraint C and every variable x with domain D, each value for x from D
participates in a solution to C.

10

7 LECTURE 13 OCTOBER 2006

7 Lecture 13 October 2006

Apt Book: pages 82-107.

7.1 Proof Theoretic Framework

7.1.1 Proof Rules

Rules that transform CSPs will be written in the form

〈C;DE〉〈
C′;DE ′

〉
A rule φ

ψ is equivalence preserving if φ and ψ are equivalent.
All rules considered will be equivalence preserving.

7.1.2 Domain Reduction Rules

• DE := x1 ∈ D1, ..., xn ∈ Dn,

• DE ′ := x1 ∈ D′
1, ..., xn ∈ D′

n,

• for i ∈ [1..n]: D′
i ⊆ Di,

• C′: restriction of all constraints in C to the domains D′
1, ..., D

′
n.

7.1.3 Transformation Rules

• Not domain reduction rule,

• C′ 6= ∅,

• DE ′ extends DE .

7.1.4 Introduction Rules

〈C;DE〉
〈C, C;DE〉

is an introduction rule if C does not occur in C. Such rules introduce new
constraints.

If the rule does not depend on DE then we write

C
C, C

.

7.1.5 Derivations

Application of a rule (informally): replace in a CSP the part that matches the
premise by the conclusion.

Relevant application of a rule (informally): the result di�ers from the initial
CSP.

A CSP P is closed under the applications of R if

• R cannot be applied to P

or

• no application of it to P is relevant.

11

7.2 Term Equations 7 LECTURE 13 OCTOBER 2006

Given: a �nite set of proof rules.

• Derivation: a sequence of CSPs s.t. each is obtained from the previous one
by an application of a proof rule.

• A �nite derivation is called

� successful: last element is the �rst solved CSP in this derivation,

� failed: last element is the �rst failed CSP in this derivation,

� stabilizing: last element is the �rst CSP closed under the applications of
the proof rules.

7.1.6 Recap

• A constraint is solved if it equals the Cartesian product of the domains of its
variables.

• CSP is solved if all its constraints are solved.

• CSP is failed if

� it contains the false constraint ⊥, or
� some of its domains or constraints are empty.

7.2 Term Equations

The �rst complete solver we shall discuss deals with solving �nite sets of term
equations. This is known as the uni�cation problem and is of paramount importance
for automated theorem proving and for logic programming.

Some de�nitions:
The Alphabet consists of

• variables: x, y, z, u, ...,

• function symbols, each with a �xed arity: f, g, h,

• parentheses: '(' and ')',

• comma, that is: ',' .

7.2.1 Terms

De�ned inductively as follows.
a variable is a term,
if f is an n-ary function symbol and t1, ..., tn are terms, then f(t1, ..., tn) is a

term.
Note: Every constant is a term.

7.2.2 Substitutions

Finite mappings from variables to terms. To each variable x in its domain a term
di�erent from x is assigned.

Written as {x1/t1, ..., xn/tn}
where
x1, ..., xn are di�erent variables,
t1, ..., tn are terms,
for i ∈ [1, n], xi 6≡ti.

12

7 LECTURE 13 OCTOBER 2006 7.3 The UNIF Proof System

• Given: term s, substitution θ.
sθ: result of applying θ to s.
Replace simultaneously each variable in s by corresponding term from θ.

• Given substitutions θ and η.
θη: is the composition of θ and η: (θη)(x) := (xθ)η. i.e. �rst apply θ and
only then apply η. Note that θη is a substitution.

• θ is more general than τ if for substitution η, τ = θη.

7.2.3 Uni�ers and Most General Uni�ers (MGUs)

Substitution θ is a uni�er of s and t if sθ ≡ tθ.
θ is a most general uni�er (mgu) of s and t if

• θ is a uni�er of s and t.

• θ is more general than all other uni�ers of s and t.

θ is a uni�er of a set of term equations {s1 = t1, ..., sn = tn} if θ is a uni�er of si
and ti for i ∈ [1..n].

θ is an mgu of E if

• θ is a uni�er of E,

• θ is more general than all uni�ers of E.

Two sets of equations are equivalent if they have the same set of uni�ers.
Example: Both θ = {x/c, y/g(c, a), z/b} and η = {y/g(x, a), z/b} are uni-

�ers of {f(g(x, a), z) = f(y, b)}, however, η is more general than θ. Proof -
θ = {x/c, y/g(c, a), z/b} = {y/g(c, a), z/b}{x/c} = η{x/c}.

Deciding whether a given set of term equations has a uni�er is called the uni-
�cation problem. Uni�ers may or may not exist. For example neither {a = f(a)}
nor {f(x) = g(x)} has a uni�er.

7.3 The UNIF Proof System

The UNIF proof system may be used to solve the uni�cation problem. It consists
of six rewrite rules:

1. Decomposition
f(s1, ..., sn) = f(t1, ...tn)

s1 = t1, ..., sn = tn
.

2. Failure 1, if f 6≡g then

f(s1, ..., sn) = g(t1, ...tn)
⊥

.

3. Deletion
x = x

.

4. Orientation, if t is not a variable and x is a variable then

t = x

x = t
.

13

7.4 Martelli-Montanari Algorithm 8 LECTURE 20 OCTOBER 2006

5. Substitution, if x /∈ V ar(t) and x ∈ V ar(E) then

x = t, E

x = t, E{x/t}
.

6. Failure 2, if x ∈ V ar(t) and x 6= t then

x = t

⊥
.

Example using the UNIF Proof System to try to �nd if there's a uni�er for the
following set of equations:

E := {k(z, f(x, b, z)) = k(h(x), f(g(a), y, z))}

Using Decomposition rule to get rid of the outermost applications of the function
symbol k we get

{z = h(x), f(x, b, z) = f(g(a), y, z)}

Using Decomposition again we get

{z = h(x), x = g(a), b = y, z = z}

Using the Transposition rule we get

{z = h(x), x = g(a), y = b, z = z}

Using Deletion rule we get

{z = h(x), x = g(a), y = b}

Using Substitution rule we get

{z = h(g(a)), x = g(a), y = b}

No rule applies at this stage.
{z/h(g(a)), x/g(a), y/b} is an mgu of E.

7.4 Martelli-Montanari Algorithm

There are cases for which UNIF does not terminate. A ��x� to this problem is called
the Martelli-Montanari Algorithm, which always terminates. The only di�erence
with UNIF is that it applies the Substitution rule globally (i.e. to all equations). It
can be proved that the Martelli-Montanari Algorithm computes an mgu of a given
system of term equations or proves that no uni�er exists.

8 Lecture 20 October 2006

Apt Book: pages 107-131.

8.1 Linear Equations over the Reals

8.1.1 Basic De�nitions

Alphabet

• each real number is a constant,

14

8 LECTURE 20 OCTOBER 2006 8.1 Linear Equations over the Reals

• for each real number r unary function symbol �r∆�,

• binary function symbol �+�, (written in the in�x notation).

Linear expressions and equations

• Linear expression over reals: a term in this alphabet.

• Linear equation over reals: s = t, s, t linear expressions.

Normal Forms
Let ≺ (pronounced precedes) be a prede�ned ordering on the variables.

• Linear expression in normal form:

Σni=1aixi + r

where n ≥ 0, x1, ..., xn are ordered w.r.t. ≺.

• Linear equation in normal form:

Σni=1aixi = r

where n ≥ 0, x1, ..., xn are ordered w.r.t. ≺.

• Linear equation in pivot form:
x = t

if x /∈ V ar(t) and t is in normal form.

• Each linear equation can be rewritten (normalizes) to a unique linear equation
in normal form.

• Substitution: �nite mapping from variables to linear expressions in normal
form.
To each variable x in its domain a linear expression di�erent from x is assigned.

• Application of a substitution to a linear expression: de�ned as before.

• Given: substitutions θ and γ.
θγ: composition of θ and γ.
Uniquely determined by

η(x) := norm((xθ)γ).

• θ is a uni�er of s = t if sθ = tθ normalizes to 0 = 0.

• mgu: de�ned as before.

Three types of normal forms:

1. 0 = 0,

2. 0 = r where r is a non-zero real,

3. Σni=1aixi = r, where n > 0.

Pivot forms of linear equations

15

8.2 Lin Proof System 8 LECTURE 20 OCTOBER 2006

• Each linear equation e normalizes to a normal form.

• If it is type 1 or 2, then it has no pivot form.

• If it is type 3, then each equation

xj = Σi∈[1..j−1]∪[j+1..n] −
ai
aj
xi +

r

aj

is a pivot form of e.

8.2 Lin Proof System

• norm(s): normal form of s,

• stand(s = t) ≡ norm(s) = norm(t).

Deletion

s = v

if s = v normalizes to 0 = 0,

Failure

s = v

⊥

if s = v normalizes to 0 = r,
r is a non-zero real,

Substitution

s = v,E

x = t, stand(E{x/t})

where x = t is a pivot form of s = v.

8.3 Gauss-Jordan Elimination Algorithm

If we use the rules from the Lin proof system and apply substitution globally (just
like with the Martelli-Montanari system) then we have an algorithm for solving
linear equations over the reals. The algorithm will always terminate. The algorithm
will only derive ⊥ i� the original system had no solutions. If the original system
of equations has a solution then the algorithm will terminate with a system of
equations which is a solved form and which is an mgu of the original system.

8.3.1 Example

Consider the following system of linear equations:

x+ y = 3

2x+ 3y = x+ z + 4

3x+ 2y + z = 10

Bringing it to normal form gives us:

x+ y = 3

16

8 LECTURE 20 OCTOBER 2006 8.3 Gauss-Jordan Elimination Algorithm

x+ 3y − z = 4

3x+ 2y + z = 10

Selecting x as our pivot, we rewrite the equation x+y = 3 to an equivalent form
which is in pivot form:

x = −y + 3

x+ 3y − z = 4

3x+ 2y + z = 10

Substituting −y + 3 for x in the second equation we get:

x = −y + 3

2y − z = 1

3x+ 2y + z = 10

Note that, as with term equations, this eliminates a variable from an equation.
Substituting −y + 3 for x in the third equation we get:

x = −y + 3

2y − z = 1

−y + z = 1

Rewriting the third equation in pivot form we get:

x = −y + 3

2y − z = 1

y = z − 1

Substituting z − 1 for y in the �rst equation results in:

x = −z + 4

2y − z = 1

y = z − 1

Substituting z − 1 for y in the second equation results in:

x = −z + 4

z = 3

y = z − 1

We shouldn't rewrite an equation to pivot form that was already used for sub-
stitution. This leaves only one equation and it happens to be in pivot form already.
Substituting 3 for z in the third equation we get:

x = −z + 4

z = 3

y = 2

Substituting 3 for z in the �rst equation we get:

x = 1

z = 3

y = 2

17

8.4 Linear Inequalities over the Reals 9 LECTURE 2 NOVEMBER 2006

8.4 Linear Inequalities over the Reals

8.4.1 Fourier-Motzkin Algorithm

Fail if there is an equation of the form 0 ≤ rhs, where rhs (Right Hand Side) is a
negative constant;

Succeed if there are no equations left or if all initial variables were eliminated; and
otherwise

Eliminate a variable that was not eliminated before and recursively solve.

To eliminate the variable x from a set of equations E, do the following:

1. E0 := E− := E+ := ∅;

2. For each equation e in E do:

• If e is equivalent to x ≤ t+, s.t. x /∈ V ars(t+) then add x ≤ t+ to E+;

• Otherwise if e is equivalent to t− ≤ x, s.t. x /∈ V ars(t−) then add t− ≤ x
to E−;

• Otherwise add e to E0;

3. Return E0 ∪ {t− ≤ t+ : ∃(t− ≤ x, x ≤ t+) ∈ E− × E+}.

9 Lecture 2 November 2006

Apt Book: pages 135-147.

9.1 Local Consistency

The main tool for solving a CSP is constraint propagation. This process must be
done in such a way that no solutions are lost. These changes are to make a CSP
more locally consistent.

Node Consistency A unary constraint C on variable x is node consistent is C
is equal to the domain of x. A CSP is node consistent if all of its unary
constraints are node consistent.

Arc Consistency Let x and y be variables and let Dx and Dy be their respective
domains. A constraint C on the sequence x, y is arc consistent if the following
holds:

• ∀v ∈ Dx∃w ∈ Dy → (v, w) ∈ C and

• ∀w ∈ Dy∃v ∈ Dx → (v, w) ∈ C.

A CSP is arc consistent if all its binary constraints are arc consistent.

Hyper-Arc Consistency is a generalization of arc consistency for constraints of
any arity. Let x1, ..., xn be a sequence of n variables and let Di be the domain
of xi for 1 ≤ i ≤ n. A constraint C on x1, ..., xn is called hyper-arc consistent
if Di = C[xi].
A CSP is called hyper-arc consistent if all its constraints are hyper-arc con-
sistent.

Directional Arc Consistency Let ≺ be an order on the variables x1 and x2and
letD1andD2 be their domains. A constraint C on x1, x2 is called directionally
arc consistent with respect to ≺ i� xi ≺ xj =⇒ Di = C[xi], for 1 ≤ i, j ≤ 2.

18

10 LECTURE 3 NOVEMBER 2006 9.2 Proof Rules for Arc Consistency

9.2 Proof Rules for Arc Consistency

Let x1, ..., xn be a sequence of variables with respective domains D1, ..., Dn. Let
C ⊆ D1 × ... × Dn, let v = (v1, ..., vn) be any member of C, and let k be any
integer such that 1 ≤ k ≤ n. We denote the projection of v onto xk by v[xk] and we
de�ne v[xk] = vk. We denote the projection of C onto xk by C[xk] and we de�ne
C[xk] = {v[xk] : v ∈ C}.

The following two rules are called the Arc Consistency Proof Rules:

1.

〈C;x ∈ Dx, y ∈ Dy〉
〈C;x ∈ C[x], y ∈ Dy〉

where C is a constraint on (the sequence) x and y. (C[x] removes all values
in domain of x not allowed by constraint C)

2.

〈C;x ∈ Dx, y ∈ Dy〉
〈C;x ∈ Dx, y ∈ C[y]〉

10 Lecture 3 November 2006

Apt Book: pages 147-156.

10.1 Normalised CSPs

A CSP P is normalized if for each pair x, y of its variables at most one constraint
on x, y exists.

Denote by Cx,y the unique constraint on x, y if it exists and otherwise the �uni-
versal� relation on x, y.

R and S: two binary relations.

• transposition of R:

RT := {(b, a)|(a, b) ∈ R},

• composition of R and S by

R · S := {(a, b)|∃c((a, c) ∈ R, (c, b) ∈ S)}.

10.2 Path Consistency

Sometimes arc consistency is not su�cient to detect unsatis�ability of a binary CSP
because examining the constraints one constraint at a time does not provide enough
information.

In the following we will assume that if we have a CSP then there will be (exactly)
one constraint between each sequence of variables. A CSP is called path consistent
i� Cxz ⊆ Cxy · Cyz for any 3-variable subset {x, y, z} of its variables such that:

• Cxy is the constraint between x and y,

• Cxz is the constraint between x and z,

• Cyz is the constraint between y and z.

19

10.3 Path Consistency Transformation Rules11 LECTURE 9 NOVEMBER 2006

10.3 Path Consistency Transformation Rules

A CSP is path consistent only if it is closed under application of the following three
transformation rules.

Cxy, Cxz, Cyx
Cxy, C ′

xz, Cyx

where C ′
xz = Cxz ∩ (Cxy · Cyz).

Cxy, Cxz, Cyx
C ′
xy, Cxz, Cyx

where C ′
xy = Cxy ∩ (Cxz · CTyz).

Cxy, Cxz, Cyx
Cxy, Cxz, C ′

yx

where C ′
yz = Cyz ∩ (CTxy · Cxz).

10.4 Directional Path Consistency

Similar to the notion of directional arc consistency. A CSP is directionally path
consistent with respect to an ordering ≺ on its variables i� Cxz ⊆ Cxy ·Cyz, if x ≺ y
and y ≺ z.

10.5 Gaussian Elimination

Apt Book: page 118.
The process of Gaussian elimination has two parts. The �rst part (Forward

Elimination) reduces a given system to either triangular or echelon form, or results
in a degenerate equation with no solution, indicating the system has no solution.
This is accomplished through the use of elementary operations. The second step
(Backward Elimination) uses back-substitution to �nd the solution of the system
above.

Stated equivalently for matrices, the �rst part reduces a matrix to row echelon
form using elementary operations while the second reduces it to reduced row echelon
form, or row canonical form.

Another point of view, which turns out to be very useful to analyze the algo-
rithm, is that Gaussian elimination computes a matrix decomposition. The three
elementary operations used in the Gaussian elimination (multiplying rows, switch-
ing rows, and adding multiples of rows to other rows) amount to multiplying the
original matrix with invertible matrices from the left. The �rst part of the algorithm
computes an LU decomposition, while the second part writes the original matrix as
the product of a uniquely determined invertible matrix and a uniquely determined
reduced row-echelon matrix.

11 Lecture 9 November 2006

Apt Book: pages 157-164.

11.1 Instantiation

Consider a CSP P = 〈C;DE〉 and a sequence x1, ...xk of variables X.

20

12 LECTURE 10 NOVEMBER 2006 11.2 k-consistency

• An instantiation on X is a function mapping each variable of X to a value
from its domain. We write {(x1, v1), ..., (xk, vk)} for the instantiation on X
that maps xi to vi, for 1 ≤ i ≤ k.

• Instantiation {(x1, v1), ..., (xk, vk)} on X satis�es a constraint C on a subse-
quence xi1 , ..., xim of X if (vi1 , ..., vim) ∈ C.

• Instantiation I on X is consistent with respect to a CSP if I satis�es each
constraint of the CSP that is de�ned on a subsequence of X.

• A consistent instantiation is called k-consistent if it has k members.

• An instantiation is a solution of a CSP if it is consistent with respect to the
CSP and is de�ned on all variables of the CSP.

• The restriction of instantiation {(x1, v1), ..., (xk, vk)} to a subsequence xi1 , ..., xim
of x1, ...xk is de�ned as {(xi1 , vi1), ..., (xim , vim)}. The restriction of I to sub-
sequence W is denoted I |W .

11.2 k-consistency

CSP is 1-consistent if for every variable x with a domain D each unary constraint
on x equals D.

CSP is k-consistent, k > 1, if every (k − 1)-consistent instantiation can be
extended to a k-consistent instantiation no matter which new variable is chosen.

1-consistency aka node consistency.

12 Lecture 10 November 2006

Apt Book: pages 162-166.

12.1 Projection and Joins

Let X be a sequence of variables, let Y be a subsequence of X and let C be a
constraint on X.

The projection
∏
Y (C) of C onto Y is de�ned as

∏
Y (C) = {t[Y] : t ∈ C}.

Let Y be a sequence of variables. Furthermore, let X1, ..., Xm be sub-sequences
of Y . Finally, let Ci be a constraint on Xi, for 1 ≤ i ≤ m.

The join C1 .// Cm of C1, ..., Cm is the unique constraint on Y that is
de�ned by C1 .// Cm = {t ∈ D : t[Xi] ∈ Ci, for 1 ≤ i ≤ m}, where D is the
Cartesian product of the domains of the variables in Y .

Let X be a sequence of variables and let P = 〈C;DE〉 be a CSP. The X-join
CX of P is the unique constraint on X that is de�ned by CX =./ {CW ∈ C : W
is a subsequence of X}, where the notation CW means that C is de�ned on the
sequence W .

12.2 Proof Rule for k-Consistency

Let X be a sequence of k − 1 variables and let w be a variable not occurring in X,
then the following proof rule (which is called k -Consistency) must hold

CX

CX ∩ΠX(CX,w)
.

21

12.3 Strong k-Consistency 15 LECTURE 23 NOVEMBER 2006

12.3 Strong k-Consistency

A CSP with at least k variables is called strongly k -consistent if it is i -consistent
for 1 ≤ i ≤ k. The following is the application.

Theorem. Let P be a CSP with k variables, which is strongly k -consistent and
whose domains are non-empty, then P is consistent.

13 Lecture 16 November 2006

13.1 4C Presentation

OPL is used to support industry.

14 Lecture 17 November 2006

14.1 Search Algorithms

1. Backtracking.

2. Forward Checking.

3. Maintain Arc Consistency (MAC) - k -way.

4. Maintain Arc Consistency - 2-way branching.

E.g. looking for solutions to 5-queens problem.

15 Lecture 23 November 2006

Apt Book: pages 166-175.

15.1 Relational Consistency

Let P be a CSP and C a sequence of its constraints.

Let P | C denote the CSP that is obtained from P by removing all constraints
not in C and all domain expressions involving variables that are not present in C.

A CSP, P = 〈C;DE〉, is called relationally (i,m)-consistent if for every subse-
quence C′ of C of length m, every subset X of size i of the variables of C′ and every
consistent instantiation I with domain X can be extended to a solution to P | C.

15.1.1 Properties

• A node consistent binary CSP is arc consistent i� it is relationally (1,1)-
consistent.

• A node consistent CSP is hyper-arc consistent i� it is relationally (1,1)-
consistent.

• A CSP with m constraints is consistent i� it is relationally (0,m)-consistent.

22

15 LECTURE 23 NOVEMBER 2006 15.2 Backtrack Free Search

15.1.2 Proof Rules

Let C1, ..., Cm be m constraints and let X be a subsequence of the (combined)
variables of C1, ..., Cm of size i.

Then the following rule, called the Relational (i,m)-Consistency Rule holds:

CX
CX ∩ΠX(C1 .// Cm)

.

15.2 Backtrack Free Search

We will now use global properties of the constraint graph and local (consistency)
properties to derive su�cient conditions for backtrack free search.

Graph is associated with a CSP P.
Nodes: variables of P.
Arcs: connect two variables if they appear jointly in some constraint.
Let P be a CSP, let G = 〈V,E〉 be its associated graph and let ≺ be an order

on V .

• The ≺-width of a node w of G is | {(v, w) ∈ E : v ≺ w} |.

• The ≺-width of G is the maximum of the ≺-widths of its nodes.

• The width of G is the minimum of its ≺-widths.

15.3 Freuder's Theorem

Consider a CSP with variables x1, ..., xn, such that

• Di 6= ∅ is the domain for xi;

• It is strongly k -consistent for some k ≤ n; and

• Its width is k − 1,

then the CSP is consistent.

Proof. Let x1 ≺ . . . ≺ xn be any linear ordering on the CSP variables such that
the ≺-width of the associated graph of the CSP is k − 1.

We shall prove that:

1. There exists a consistent instantiation with domain {x1};

2. For each i ∈ {1, . . . , n−1} each consistent instantiation with domain {x1, . . . , xi}
can be extended to some consistent instantiation with domain {x1, . . . , xi+1}.

(1) The CSP is 1 -consistent and the domain of x1 is non-empty. Therefore,
{(x1, v1)} is a consistent instantiation with domain {x1}, for any v ∈ D1,
where D1 is the domain of x1.

(2) Let Y ⊆ {x1, . . . , xi} be the neighbours of xi+1 in the associated graph of the
CSP, then s =| Y |< k.

Let I be any consistent instantiation with domain {x1, . . . , xi}.
Since the CSP is strongly (s+ 1)-consistent we can extent I | Y to a consistent

instantiation I | Y ∪ {(xi+1, di+1)}.
By construction I ∪ {(xi+1, di+1)} is consistent. The proof is completed by

induction on i.

23

18 LECTURE 1 DECEMBER 2006

16 Lecture 24 November 2006

Presentation at 4C: Rostering Problem

17 Lecture 30 November 2006

Presentation at 4C: Scheduling Problem

18 Lecture 1 December 2006

18.1 ARC Consistency Algorithm AC-3

This is an algorithm for simplifying CSPs while maintaining arc-consistency.

Given a CSP with:

• n variables

• d maximum domain size

• e binary constraints

The worst-case time complexity is O(ea)3.The space complexity is O(e+ nd).
G is the set of directed arcs (x, y) in the CSP.

Q := G;
WHILE Q 6= φ DO

Select and remove any1 (x, y) from Q;
IF Revise2(x, y) THEN

IF domain of x has changed

Q := Q ∪ {z, x} ∈ G : z 6= y;

ELSE

RETURN Wipeout3;

DONE

18.2 Worked Example

Iterations in the algorithm are re�ected in the domains of the variables and contents
of the Queue in the following table. On each row, the underlined arc is processed
and any changes to the domains of the variables are re�ected on that line.

1Best to pick one where the domain of x is small.
2Revise function removes all values of domain x which have no support in domain of y. Returns

false if domain of x is now empty.
3i.e. an empty domain has been found so arc consistency cannot be maintained.

24

19 LECTURE 7 DECEMBER 2006

Figure 2: Example CSP

A B C Q

1,2,3 1,2,3 1,2,3 AB AC BA BC CA CB
1,2,3 1,2,3 1,2,3 AC BA BC CA CB
1,2,3 1,2,3 1,2,3 BA BC CA CB
1,2,3 1,2 1,2,3 BC CA CB
1,2,3 1,2 1,2,3 CA CB AB
1,2,3 1,2 1,2 CB AB
1,2 1,2 1,2 AB AC
1 1,2 1,2 AC CA
1 1,2 1 CA BA
1 1,2 1 BA BC
1 1,2 1 BC AB
1 1 1 AB
1 1 1 φ

19 Lecture 7 December 2006

19.1 Binary and non-Binary Constraints

Remember that a k-ary constraint has a scope and a relation.

The scope is a sequence of k variables and the relation is a subset of the Cartesian
product of their domains.

Throughout this section we shall write 〈S,R〉 for a constraint with scope S and
relation R. We shall write 〈V,D,C〉 for the CSP with variables V , domain D(v)
for each variable v ∈ V , and constraints C.

There are two well known techniques for encoding a non-binary CSP as an
equivalent binary CSP.

Hidden Encoding For each non-binary constraint, C, we add a dual variable, H,
and for each variable, V , in the scope of C we add a constraint between V
and H.

25

19.2 Hidden Transformation 20 LOCAL CONSISTENCY

Dual Encoding The constraints become dual variables. We add a constraint be-
tween each pair of dual variables that share an original variable in their scope.

Both transformations may lead to CSPs with more variables and larger domains.

19.2 Hidden Transformation

Let P = 〈V,D,C〉 be a CSP then the hidden transformation Ph =
〈
V h, Dh, Ch

〉
of

P is de�ned as follows:

• V h = V ∪C. The variables in V are called the ordinary variables of Ph. The
variables in C are called the dual variables of Ph.

• Dh(v) = D(v) if v is an ordinary variable and Dh(v) = rel(v) if v is a dual
variable.

• Ch is a set of binary constraints. For each dual variable c and for each variable
v in scope(c) there is a constraint allowing all 〈w, t〉 ∈ D(v)× rel(c) such that
t[v] = w.

19.3 Dual Transformation

Let P = 〈V,D,C〉 be a CSP then the dual transformation Pd =
〈
V d, Dd, Cd

〉
of P

is de�ned as follows:

• V d = C. The variables in V d are called dual variables.

• Dd(v) = rel(v).

• Cd is a set of binary constraints. For each pair of dual variables c1 and c2 in
V d such that scope(c1) ∩ scope(c2) = S 6= ∅ there is a constraint in Cd which
allows all 〈t1, t2〉 ∈ rel(c1)× rel(c2) such that t1[S] = t2[S].

20 Local consistency

Let P = 〈V,D,C〉 be a CSP and let f be some transformation of CSPs. Then we
de�ne Pf = f(P) and

〈
V f , Df , Cf

〉
= f(P).

Example: Let ac(P) be the arc consistent equivalent of P and let

P = 〈{x, y} , λv. {1, 2} , {〈〈x, y〉 , {1, 1}〉}〉 ,

then

Pac = 〈{x, y} , λv. {1} , {〈〈x, y〉 , {1, 1}〉}〉 .

(λ is just an anonymous function)
A CSP is called empty if at least one of its domains is empty.
Let LC1 and LC2 be two local consistency transformations and let T1 and T2 be

two transformations of CSPs.
Then we say that LC1 on T1 is at least as tight as LC2 on T2, written LC1(T1) �

LC2(T2), i� for all CSPs P the following holds:

empty(LC2(T2(P))) ⇒ empty(LC1(T1(P)))

We say that LC1 on T1 is (strictly) tighter as LC2 on T2, written LC1(T1) � LC2(T2),
i� LC1(T1) � LC2(T2) and not LC2(T2) � LC1(T1).

26

21 LECTURE 8 DECEMBER 200620.1 Arc Consistency on Hidden Transformation

20.1 Arc Consistency on Hidden Transformation

Theorem. Given any CSP P,

• P is arc consistent if and only if Ph is arc consistent.

• Pac◦h = Ph◦ac.

• Arc consistency on P is equivalent to arc consistency on h(P).

20.2 Arc Consistency on Dual Transformation

Theorem. Arc consistency on the dual representation is (strictly) tighter than arc
consistency on the original representation.

21 Lecture 8 December 2006

From Pearson and Jeavons paper.
New CSP notation:
A constraint satisfaction problem is a tuple P = 〈V,D,R1(S1), . . . , Rn(Sn)〉,

where

• V is a set of variables;

• D is a �nite set of values called the domain of P;

• Ri(Si) is constraint:

� Si is an ordered list of ki variables called the scope of the constraint; and

� Ri is a relation over D of arity ki, called the constraint relation.

A solution to P = 〈V,D,R1(S1), . . . , Rn(Sn)〉 is a function f : V → D, such that
f(Si) ∈ Ri, for 1 ≤ i ≤ n.

Here we write f (〈v1, . . . , vk〉) for 〈f(v1), . . . , f(vk)〉, i.e. we apply the unary
operator f(·) to the components of the single tuple 〈v1, . . . , vk〉. The set of all
solutions to P is denoted Sol(P).

21.1 Tractability

The general constraint satisfaction problem is NP -complete. Throughout this and
the next lecture it will be assumed that P 6= NP .

We say that a problem class is tractable if it is always possible to solve any
problem instance from that class in polynomial time. A problem class is intractable
if it is not tractable.

The following reasons have been identi�ed as �making� problem classes tractable.

• Restricted structure. For example, if the constraint graphs of all instances are
bounded-width trees then we can solve them without backtracking.

• Restricted relations. For example, if all relations of all problem instances
contain a constant tuple 〈v, . . . , v〉 then we can trivially solve each instance.

• Restrictions to �local� properties. For example, let k = d(r − 1) + 1, where d
is the size of the domain and r is the size of the largest scope. If an instance
is strongly k -consistent, then it is consistent.

27

21.2 Trees 21 LECTURE 8 DECEMBER 2006

21.2 Trees

A chain of length n in a hypergraph 〈V,E〉 is a sequence x1, E1, x2, . . . , En, xn+1

such that

• x1, . . . , xn are distinct vertexes from V ;

• e1, . . . , en are distinct edges from E;

• xk, xk+1 ∈ Ek, for 1 ≤ k ≤ n.

A chain with length greater than 1 is called cyclic if x1 = xn+1.
A hypergraph is called a tree if it has no cyclic chains.
Remember:

Theorem. [Montanari/Freuder] Let Ctree be the class of all binary CSPs whose
constraint hypergraphs are trees. Then Ctree is tractable.

21.3 Problems with Limited Interconnectivity

We can independently solve the problems induced by the connected components of
a constraint hypergraph.

Similarly, we can decompose problems that have limited interconnectivity.
For example, if the edges are of the form E1∪E2∪{e} where ∪E1∩∪E2 = ∅ and

e∩∪E1 6= ∅ 6= e∩∪E2 then it is probably better if we �rst solve E1(E2), propagate
from E1 to E2 via e and then solve E2(E1). Here ∪E denotes ∪e∈Ee .

A hinge is a set of at least two edges which cuts the hypergraph into separate
connected components such that each connected component intersects with the
hinge within only one edge.

A hinge not properly containing other hinges is called a minimal hinge. Any
hypergraph can be decomposed into a collection of minimal hinges, which overlap
each other in a tree structure, which is called a hinge-tree of the hypergraph.

21.4 Hinge Tree Usage

It should be clear that the join of the problems given by the nodes of the hinge-tree
of a CSP P is equal to Sol(P).

If the nodes do not correspond to too large problems then we can solve P as
follows:

• We solve the problems corresponding to the nodes in the hinge-tree and de�ne
a constraint for each of these problems.

• We de�ne an acyclic CSP with these constraints.

• We solve the acyclic CSP.

21.5 Tractability due to Restricted Width

Let P be a CSP with hypergraph 〈V,E〉.
Let · ≺ · be an ordering on V with width k − 1.
If P is strongly k -consistent then a solution to P can be found by performing a

backtrack-free search using the ordering · ≺ ·.
Unfortunately, it is di�cult (NP -complete) in general to compute a minimum

width ordering for a given hypergraph.

28

22 LECTURE 14 DECEMBER 2006

22 Lecture 14 December 2006

From Pearson and Jeavons paper.

22.1 Restrictions on the Constraint Language

Let R be a k -ary relation with domain D.

Let φ : Dn 7→ D be a function.

Then we say that R is closed under φ if〈
φ(d1

1, d
2
1, . . . , d

n
1), φ(d1

2, d
2
2, . . . , d

n
2), . . . , φ(d1

k, d
2
k, . . . , d

n
k)

〉
∈ R

for all 〈〈
d1
1, d

1
2, . . . , d

1
k

〉
,
〈
d2
1, d

2
2, . . . , d

2
k

〉
, . . . , 〈dn1 , dn2 , . . . , dnk 〉

〉
∈ Rn

If R is closed under φ then we say that φ is a polymorphism of R. If φ is a
polymorphism of R then we will write

φ(
〈
d1
1, d

1
2, . . . , d

1
k

〉
,
〈
d2
1, d

2
2, . . . , d

2
k

〉
, . . . , 〈dn1 , dn2 , . . . , dnk 〉)

for 〈
φ(d1

1, d
2
1, . . . , d

n
1), φ(d1

2, d
2
2, . . . , d

n
2), . . . , φ(d1

k, d
2
k, . . . , d

n
k)

〉
If a relation is closed under an operation then all projections and joins of those

relations are also closed under that operation. From now on we will assume that
the domain of all relations is D and that D has at least two elements. Finally, we
will assume that Γ is some set of relations over D.

The set of all CSPs in which the constraint relations are members of Γ will
be denoted CΓ. The set of all polymorphisms under which each member of Γ
is closed will be denoted Fun(Γ). The following theorem demonstrates that the
polymorphism of Γ tell us something about the tractability of problems in CΓ.

Theorem [Jeavons] The complexity of CΓ is completely determined by Fun(Γ).

22.2 Six Types of Functions

Constant function φ(v) = d, for all v ∈ D, for some d ∈ D.

Idempotent binary function φ(d, d) = d, for all d ∈ D.

Near-unanimity function φ(d, . . . , d, d′) = φ(d, . . . , d, d′, d) = φ(d′, d, . . . , d) = d
for all d, d′ ∈ D.

A�ne function φ(d1, d2, d3) = d1 − d2 + d3, for all d1, d2, d3 ∈ D, where ·+ · is a
binary operator such that D is an Abelian group.

Semiprojection A function φ of arity 3 or more such that there exists an i,
1 ≤ i ≤ n, such that φ(d1, . . . , dn) = di, for all d1, . . . , dn ∈ D such that
| {d1, . . . , dn} |< n.

Essentially unary function A function φ of arity n such that there exists an
1 ≤ i ≤ n, and some function f : D 7→ D, such that φ(d1, . . . , dn) = f(di), for
all d1, . . . , dn ∈ D.

29

22.3 ACI Functions 23 LECTURE 15 DECEMBER 2006

22.3 ACI Functions

Closure under a binary idempotent function alone does not guarantee tractability.

However, for the class of ACI functions (associative, commutative, and idempo-
tent) we can guarantee tractability.

A binary function φ : D2 7→ D is called an ACI function (or semilatice function)
if it has each of the following three properties:

1. Associativity φ(x, φ(y, z)) = φ(φ(x, y), z), for all x, y, z ∈ D.

2. Commutativity φ(x, y) = φ(y, x), for all x, y ∈ D.

3. Idempotency φ(d, d) = d, for all d ∈ D.

Theorem If Γ is closed under an ACI function then CΓ is tractable.

22.4 Summary

CΓ is tractable if any of the following is true:

• Fun(Γ) contains a constant function.

• Fun(Γ) contains a binary ACI function.

• Fun(Γ) contains a near-unanimity function.

• Fun(Γ) contains an a�ne function.

CΓ is NP -complete if any of the following is true:

• Fun(Γ) only contains semiprojections.

• Fun(Γ) only contains essentially unary functions.

23 Lecture 15 December 2006

23.1 CSP De�nition

A set of variables X. A domain D(x) for each variable x ∈ X. A collection of
constraints C among subsets of the variables in X.

Each constraint in C is a pair (S,R). S = (x1, . . . , xk) is a sequence of variables,
which is called the scope of the constraint. R ⊆ D(x1) × . . . ×D(xk) is called the
relation of the constraint. The number k is called the arity of the constraint.

23.2 Shaving

Shaving is a commonly used technique to improve the pruning power of an existing
consistency notion C. Operationally, shaving tries to make each value in the domain
of each variable �singleton C consistent,� removing singleton inconsistent values.

Here a value, v, in the domain of a variable, X, is singleton C consistent if it is
possible to assign v to X and still make the problem C consistent.

30

23 LECTURE 15 DECEMBER 2006 23.3 Consistency

23.3 Consistency

Two of the most interesting contributions of constraint satisfaction are the notions
of consistency and constraint propagation.

Consistency tells us something about the existence of solutions. If search is used
to solve a problem then consistency tells us something about how easy/di�cult it
is to make a mistake during search.

Constraint propagation uses the constraints and the domains of a CSP to actively
enforce a certain level of consistency without losing/adding solutions.

Usually, enforcing consistency means removing nogoods from domains and record-
ing nogood tuples. E�ectively nogood recording results in the creation of new con-
straints.

23.4 SAC-1 Singleton Arc Consistency Algorithm

function SAC-1(X,D,C) {

Enforce arc consistency;

if a domain is empty then

return wipeout ;

Q := {〈x, v〉 : x ∈ X, v ∈ D(x)};
while Q 6= ∅ do {

Select and remove any 〈x, v〉 from Q;
Assign v to x;
Enforce arc consistency;

if a domain is empty then {

Undo arc consistency;

Remove v from D(x);
Enforce arc consistency;

if a domain is empty then

return wipeout ;

Q := {〈x, v〉 : x ∈ X, v ∈ D(x)};
}

else

Undo arc consistency and assignment;

};

return sac_consistent ;

};

23.5 k-Singleton Arc Consistency

Singleton arc consistency A CSP P with variables X is singleton arc consistent
if and only if for any x1 ∈ X and any v1 ∈ D(x1): ac(P ∧ x1 = v1) 6= ⊥.

k-Singleton arc consistency A CSP P with variables X is k -singleton arc con-
sistent if and only if for any x1 ∈ X and any v1 ∈ D(x1): ac(P ∧ x1 =
v1, . . . , xk = vk) 6= ⊥,

for all {x2, . . . , xk} ⊆ X\ {x1}, and some v2 ∈ D(x2), . . . , vk ∈ D(xk).

weak k-Singleton arc consistency A CSP P with variablesX is weakly k -singleton
arc consistent if and only if for any x1 ∈ X and any v1 ∈ D(x1): ac(P ∧ x1 =
v1, . . . , xk = vk) 6= ⊥,

for some {x2, . . . , xk} ⊆ X\ {x1}, and some v2 ∈ D(x2), . . . , vk ∈ D(xk).

31

24 LECTURE 2 MARCH 2007

24 Lecture 2 March 2007

24.1 Polymorphism

There is only one domain for all elements in the tuples.
φ(x, y) can return z so long as z is in the relation.

24.2 Singleton ARC-consistency

1. Assign any value to any variable (i.e. eliminate all other values from the
domain of that variable)

2. Make CSP Arc-consistent.

3. If you get an empty domain then the original CSP is not SAC, and the value
chosen cannot be part of a solution.

Make Arc-Consistent means remove values sans supports.
For a problem (CSP) to be SAC all values have to be SAC.

32

