
CS5201 Intelligent Systems

Paul Ahern

May 31, 2007

Abstract

Notes from lectures.

Contents

1 Key Facts to Know 4

1.1 Exam . 4

2 Lecture 3 October 2006 4

3 Lecture 5 October 2006 4

3.1 Background . 4

4 Lecture 10 October 2006 5

4.1 Rules-based Expert Systems . 5

5 Lecture 12 October 2006 7

5.1 Inference . 7

5.2 Uncertainty . 7

6 Lecture 17 October 2006 8

6.1 Probability Theory . 8

6.2 Reasoning in Expert Systems . 8

7 Lecture 24 October 2006 9

7.1 Bias of the Bayesian Method . 9

7.2 Certainty Factors Theory . 9

8 Lecture 31 October 2006 10

8.1 Fuzzy Logic . 10

9 Lecture 2 November 2006 11

9.1 Fuzzy Linguistic variables and hedges . 11

9.2 Fuzzy Reasoning . 12

9.3 Mamdani Method . 13

9.4 Sugeno Fuzzy Inference . 13

9.5 Mamdani versus Sugeno . 13

10 Lecture 7 November 2006 13

10.1 Service Centre case study . 13

10.2 Tuning Fuzzy Systems . 14

1

CONTENTS CONTENTS

11 Lecture 14 November 2006 14

11.1 Genetic Programming . 14

11.2 Pythagoras Theorem example . 14

12 Lecture 16 November 2006 15

12.1 Evolutionary Approach . 15

12.2 Genetic Algorithms . 15

13 Lecture 21 November 2006 16

14 Lecture 23 November 2006 17

14.1 Machine Learning . 17

14.2 Checkers learning program . 17

15 Lecture 28 November 2006 18

15.1 Concept Learning and General-to-Speci�c Ordering 18

15.2 Find-S Algorithm . 18

16 Lecture 30 November 2006 18

16.1 Inductive Learning . 18

16.2 Candidate-Elimination Algorithm . 19

17 Lecture 5 December 2006 19

17.1 Decision Trees . 19

18 Lecture 7 December 2006 20

19 Lecture 12 December 2006 20

19.1 ID3 . 20

19.2 Rule post-pruning . 21

19.3 ID3 Algorithm . 21

19.4 Extensions to ID3 . 22

20 Lecture 16 January 2007 22

20.1 Arti�cial Neural Networks . 22

20.1.1 Biological Motivation . 22

20.1.2 Appropriate Problems for ANNs . 22

20.1.3 Perceptrons . 23

21 Lecture 18 January 2007 24

21.1 Perceptron Training Rule . 24

21.2 Gradient-Descent Algorithm . 24

21.3 Summary . 24

22 Lecture 23 January 2007 25

22.1 Incremental (Stochastic) Gradient Descent . 25

22.2 Sigmoid Unit . 25

22.3 Backpropagation Algorithm . 26

23 Lecture 25 January 2007 27

23.1 Convergence of Back-propagation . 27

2

CONTENTS CONTENTS

24 Lecture 30 January 2007 27

24.1 Evaluating Hypotheses . 27

24.2 Sample Error and True Error . 28

24.3 Normal Distribution approximates Binomial . 28

24.4 Normal Probability Distribution . 28

24.5 Central Limit Theorem . 29

25 Lecture 1 February 2007 29

25.1 Di�erence Between Hypotheses . 29

25.2 Paired t test . 29

26 Lecture 6 February 2007 29

26.1 Bayesian Learning . 29

27 Lecture 8 February 2007 30

27.1 Choosing Hypotheses . 30

27.2 Probability Formulae . 30

27.3 Find-S . 30

28 Lecture 13 February 2007 31

28.1 Learning a Real Valued Function . 31

28.2 Learning to Predict Probabilities . 31

28.3 Minimum Description Length . 31

28.4 Most Probable Classi�cation of New Instances . 31

28.5 Bayes Optimal Classi�cation . 32

29 Lecture 15 February 2007 32

29.1 Gibbs Classi�er . 32

29.2 Naive Bayes Classi�er . 32

30 Lecture 20 February 2007 33

30.1 Bayesian Belief Networks . 33

31 Lecture 22 February 2007 33

31.1 Bayesian Belief Networks . 33

31.1.1 Inference . 34

31.1.2 Learning . 34

31.2 Expectation Maximisation (EM) Algorithm . 34

32 Lecture 27 February 2007 35

32.1 GeNIe . 35

33 Lecture 1 March 2007 35

33.1 GeNIe . 35

34 Lecture 6 March 2007 35

34.1 Reinforcement Learning . 35

34.2 Markov Decision Processes . 35

35 Lecture 8 March 2007 36

35.1 Q Function . 36

35.2 Q Learning for Deterministic Worlds . 36

35.3 Non-deterministic Case . 37

3

3 LECTURE 5 OCTOBER 2006

36 Lecture 13 March 2007 37
36.1 Temporal Di�erence Learning . 37
36.2 Subtleties and Ongoing Research . 37

37 Lecture 15 March 2007 38

38 Lecture 20 March 2007 38
38.1 Review of Course . 38

39 Lecture 22 March 2007 38
39.1 Review of Course (continued) . 38

40 Lecture 29 March 2007 39
40.1 Exam . 39

41 Lecture 30 March 2007 40
41.1 Exam (continued) . 40

41.1.1 Decision Trees . 41
41.1.2 Concept Learning . 41
41.1.3 Bayesian Learning . 41
41.1.4 Reinforcement Learning . 42

1 Key Facts to Know

1.1 Exam

Short answers preferred. Cover key terms and concepts.

1. Know Genetic Algorithm steps.

2. Know how to establish mean and con�dence intervals for expected error of hypothesis
(Mitchell, chapter 5)

3. Know Bayes Rule:

p(A | B) =
p(B | A)× p(A)

p(B)

4. Fuzzy Logic de�nitely coming up.

2 Lecture 3 October 2006

40% of course marks will be awarded on the basis of the TAC SCM assignment. Team e�ort to
build a competitive agent.

3 Lecture 5 October 2006

Negnevitsky Chapter 1.

3.1 Background

• Intelligence is the ability to learn and understand, to solve problems and to make decisions.

• Arti�cial Intelligence is a science that has de�ned its goal as making machines do things that
would require intelligence if done by humans.

4

4 LECTURE 10 OCTOBER 2006

• A machine is thought intelligent if it can achieve human-level performance in some cognitive
task. To build an intelligent machine, we have to capture, organize and use human expert
knowledge in some problem area.

• The realization that the problem domain for intelligent machines had to be su�ciently
restricted marked a major paradigm shift in AI from general-purpose, knowledge-sparse,
weak methods to domain-speci�c, knowledge-intensive methods. This led to the development
of expert systems - computer programs capable of performing at a human-expert level in
a narrow problem area. Expert systems use human knowledge and expertise in the form
of speci�c rules, and are distinguished by the clean separation of the knowledge and the
reasoning mechanism. They can also explain their reasoning procedures.

• One of the main di�culties in building intelligent machines, or knowledge engineering, is the
knowledge acquisition bottleneck - extracting knowledge from human experts.

• Experts think in imprecise terms such as very often and almost never, usually and hardly
ever, frequently and occasionally, and use linguistic variables such as high and low, fast and
slow, heavy and light. Fuzzy logic or fuzzy set theory provides a means to compute with
words. It concentrates on the use of fuzzy values that capture the meaning of words, human
reasoning and decision making, and provides a way of breaking through the computational
burden of traditional expert systems.

• Expert systems can neither learn nor improve themselves through experience. They are
individually created and demand large e�orts for their development. It can take from �ve to
ten person-years to build even a moderate expert system. Machine learning can accelerate
this process signi�cantly and enhance the quality of knowledge by adding new rules or
changing incorrect ones.

• Arti�cial neural networks, inspired by biological neural networks, learn from historical cases
and make it possible to generate rules automatically and thus avoid the tedious and expensive
processes of knowledge acquisition, validation and revision.

• Integration of expert systems and ANNs, and fuzzy logic and ANNs improve the adaptability,
fault tolerance and speed of knowledge-based systems.

4 Lecture 10 October 2006

Negnevitsky Chapter 2.

4.1 Rules-based Expert Systems

• Knowledge is a theoretical or practical understanding of a subject. Knowledge is the sum of
what is currently known.

• An expert is a person who has deep knowledge in the form of facts and rules and strong
practical experience in a particular domain. An expert can do things other people cannot.

• The experts can usually express their knowledge in the form of production rules.

• Production rules are represented as IF <antecedent> THEN <consequent> statements. A
production rule is the most popular type of knowledge representation. Rules can express
relations, recommendations, directives, strategies and heuristics.

• A computer program capable of performing at a human-expert level in a narrow problem
domain area is called an expert system. The most popular expert systems are rule-based
expert systems.

5

4.1 Rules-based Expert Systems 4 LECTURE 10 OCTOBER 2006

Figure 1: Newell and Simon, Production System Model

• In developing rule-based experts systems, shells are becoming particularly common. An
experts system shell is a skeleton expert system with the knowledge removed. To build a
new expert system application, all the user has to do is to add the knowledge in the form of
rules and provide relevant data.

• A rule-based expert system has �ve basic components:

1. Knowledge Base contains the domain knowledge represented as a set of rules.

2. Database contains a set of facts used to match against the IF parts of rules.

3. Inference Engine links the rules with the facts and carries out the reasoning whereby
the expert system reaches a solution.

4. Explanation Facilities enable the user to query the expert system about why a particular
conclusion is reached and why a speci�c fact is needed.

5. User Interface is the means of communication between a user and the expert system.

• Expert systems separate knowledge from its processing by splitting up the knowledge base
and the inference engine. This makes the task of building and maintaining an expert system
much easier.

Knowledge Engineer uses a shell (e.g. VP Expert) and populates the Knowledge Base with infor-
mation from the expert(s).

Reasoning Engine is made up of:

• Inference Engine

• Explanation Facility

6

5 LECTURE 12 OCTOBER 2006

• User Interface

The Rules can express: Relations, Recommendations, Directives, Strategy or Heuristics. System
should be deterministic.

5 Lecture 12 October 2006

Negnevitsky Chapters 2-3.

5.1 Inference

• There are two principal methods to direct search and reasoning: forward chaining and back-
ward chaining inference techniques. Forward chaining is data-driven reasoning; It starts
from the known data and proceeds forward until no further rules can be �red. Backward
chaining is goal-driven reasoning; An expert system has a hypothetical solution (the goal),
and the inference engine attempts to �nd the evidence to prove it.

• If more than one rule can be �red in a given cycle, the inference engine must decide which
rule to �re. A method for deciding is called con�ict resolution. Some methods:

� Fire the rule with the highest priority.

� Fire the most speci�c rule.

� Fire the rule which uses the data most recently entered in the database.

• Rule-based experts systems have the advantages of natural knowledge representation, uni-
form structure, separation of knowledge from its processing, and coping with incomplete and
uncertain knowledge.

• Rule-based expert systems also have disadvantages, especially opaque relations between
rules, ine�ective search strategy and inability to learn (humans required to update the rules).

How do we choose between backward or forward inference?
Answer: Study how a domain expert solves a problem. If a domain expert needs to gather

information and then tries to infer, then forward inference is more likely to be suitable. If the
expert hypothesizes about solutions, then use backward inference.

We can combine inference methods, but the basic inference mechanism is usually backward.

5.2 Uncertainty

Uncertainty is de�ned as the lack of the exact knowledge that would enable us to reach a perfectly
reliable conclusion. Classical logic permits only exact reasoning. It assumes that perfect knowledge
always exists and the law of the excluded middle can always be applied. ¬TRUE = FALSE.

Source of uncertain knowledge:

1. Weak implications. Domain experts and knowledge engineers must establish concrete corre-
lations between IF and THEN parts of the rules. Therefore, expert systems need to have
the ability to handle vague associations, for example by accepting the degree of correlations
as numerical certainty factors.

2. Imprecise Language. Our natural language is ambiguous and imprecise. We describe facts
with such terms as often and sometimes, frequently and hardly ever. As a result, it can
be di�cult to express knowledge in the precise IF-THEN form of production rules. Expert
systems need quanti�ed measures.

3. Unknown Data. When the data is incomplete or missing, the only solution is to accept the
value unknown and proceed to an approximate reasoning with this value.

4. Disagreement among experts. Weighting associated to di�erent expert opinions.

7

6 LECTURE 17 OCTOBER 2006

6 Lecture 17 October 2006

Negnevitsky Chapter 3.

6.1 Probability Theory

When examining uncertainty, we adopt probability as a model to predict future events.

P (success) = p =
number of successes

number of possible outcomes
=

s

s + f

And likewise for failures, q . Note that p + q = 1. Now let A be some event and B be some
other event. These are not mutually exclusive. The conditional probability that event A will
occur, given that B has occurred is P (A | B).

P (A | B) =
number of times both A and B can occur

number of timesB can occur

The probability of A and B both occurring, denoted P (A ∩B), is the joint probability.

P (A ∩B) = p(A | B)× p(B)

and is commutative (i.e. P (A∩B) = P (B ∩A). This allows us to derive the famous Bayesian
Rule:

p(A | B) =
p(B | A)× p(A)

p(B)

If A is conditionally dependent on n other mutually exclusive events then:

p(A) =
n∑

i=1

p(A | Bi)× p(Bi)

We shall now consider the case where A depends on two mutually exclusive events, B and ¬B.
From the previous equation

p(B) = (p(B | A)× p(A)) + (p(B | ¬A)× p(¬A))

and substituting this into Bayesian Rule gives

p(A | B) =
p(B | A)× p(A)

(p(B | A)× p(A)) + (p(B | ¬A)× p(¬A))

This equation is used in the management of uncertainty in expert systems.

6.2 Reasoning in Expert Systems

Suppose rules in a knowledge base are represented as follows:

IF H is true

THEN E is true, with probability p

Now consider, if event E has occurred, how do we determine the probability that H occurred?
Answer: Above equation, replacing for A and B. In this case, H is the hypothesis and E is the

evidence.

p(H | E) =
p(E | H)× p(H)

(p(E | H)× p(H)) + (p(E | ¬H)× p(¬H))

Single evidence E and m hypotheses imply:

p(Hi | E) =
p(E | Hi)× p(Hi)

Σm
k=1p(E | Hk)× p(Hk)

8

7 LECTURE 24 OCTOBER 2006

Suppose the expert, given multiple (n) evidences, cannot distinguish between m hypotheses:

p(Hi | E1, ..., En) =
p(E1, ..., En | Hi)× p(Hi)

Σm
k=1p(E1, ..., En | Hk)× p(Hk)

An application of this equation requires us to obtain the conditional probabilities of all pos-
sible combinations of evidences for all hypotheses! This grows exponentially. Therefore, assume
conditional independence if possible.

Let the posterior probability of hypothesis Hi upon observing evidences E1...En be:

p(Hi | E1...En) =
p(E1 | Hi)× ...× p(En | Hi)× p(Hi)

Σm
k=1p(E1 | Hk)× ...× p(En | Hk)× p(Hk)

This is a far more tractable solution and assumes conditional independence among di�erent
evidences.

7 Lecture 24 October 2006

Negnevitsky Chapter 3.

7.1 Bias of the Bayesian Method

The framework for Bayesian reasoning requires probability values as primary inputs. The assess-
ment of these values usually involves human judgment. However, psychological research shows
that humans either cannot elicit probability values consistent with the Bayesian rules or do it
badly. The conditional probabilities may be inconsistent with the prior probabilities given by the
expert.

In the Bayesian approach, an expert is required to provide the prior probability of hypothesis
H and values for the likelihood of su�ciency, LS, to measure belief in the hypothesis if evidence
E is present, and the likelihood of necessity, LN , to measure disbelief in hypothesis H if the same
evidence is missing. The Bayesian method uses rules in the following form:

IF E is true {LS,LN}

THEN H is true (prior probability}

To apply the Bayesian approach we must satisfy the conditional independence of evidence. We
also should have reliable statistical data and de�ne the prior probabilities for each hypothesis. As
these requirements are rarely satis�ed in real-world problems only a few systems have been built
based on Bayesian reasoning.

7.2 Certainty Factors Theory

Certainty factors theory is a popular alternative to Bayesian reasoning. The basic principles
of this theory were �rst introduced in MYCIN, an expert system for diagnosis and therapy of
blood infections and meningitis. The developers of MYCIN found that medical experts expressed
the strength of their belief in terms that were neither logical nor mathematically consistent. In
addition, reliable statistical data about the problem domain was not available.

The MYCIN team decided to introduce a certainty factor (cf), a number to measure the
expert's belief. The maximum value of the certainty factor was +1.0 (de�nitely true) and the
minimum -1.0 (de�nitely false). For example, if the expert stated that some evidence was almost
certainly true, a cf factor of 0.8 would be assigned to this evidence.

In expert systems with certainty factors the knowledge base consists of a set of rules that have
the following form:

IF <evidence>

THEN <hypothesis> {cf}

9

8 LECTURE 31 OCTOBER 2006

where cf represents belief in hypothesis H given that evidence E has occurred.
Certainty factors are used if the probabilities are not known or cannot be easily obtained.

Certainly theory can manage incrementally acquired evidence, the conjunctions and disjunction
of hypotheses as well as evidences with di�erent degrees of belief.

Certainty factors provide a simple way of updating probabilities given new evidence. They are
slightly dodgy theoretically, but in practice this tends not to matter too much. This is mainly
because the error in dealing with certainties tends to lie as much in the certainty factors attached
to the rules (or in conditional probabilities assigned to things) as in how they are manipulated.
Generally these certainty factors will be based on rough guesses of experts in the domain, rather
than based on actual statistical knowledge. These guesses tend not to be very good.

Both Bayesian reasoning and certainty theory share a common problem: �nding an expert able
to quantify subjective and qualitative information.

8 Lecture 31 October 2006

Negnevitsky Chapter 4.

8.1 Fuzzy Logic

Fuzzy logic re�ects how people think. It attempts to model our sense of words, our decision making
and our common sense. As a result, it is leading to new, more human, intelligent systems.

In 1965 Lot� Zadeh, published �Fuzzy sets�. He extended possibility theory into a formal
system of mathematical logic, and introduced a new concept for applying natural language terms.
This new logic for representing and manipulating fuzzy terms was called fuzzy logic. Fuzziness
rests on fuzzy set theory. Fuzzy logic is a small part of that theory.

Figure 2: Crisp v Fuzzy Sets

• Fuzzy logic is multi-valued (unlike Boolean).

• It deals with degrees of membership and degrees of truth.

• Uses the continuum of logical values between 0 (completely false) and 1 (completely true).

• Things can be partly true and partly false at the same time.

10

9 LECTURE 2 NOVEMBER 2006

• To express a continuous fuzzy set on a computer, we need to map it to a function.

• Map the elements to their degree of membership of each set.

• Typical functions include sigmoid and Gaussian.

• Linear Fit Functions are the fastest and used most in practice.

Figure 3: Fuzzy Operations

Complement µ¬A(x) = 1− µA(x).

Containment which sets belong to other sets.

Intersection µA∩B(x) = min[µA(x), µB(x)] = µA(x) ∩ µB(x).

Union µA∪B(x) = max[µA(x), µB(x)] = µA(x) ∪ µB(x), where x ∈ X (i.e. universe of discourse
X).

9 Lecture 2 November 2006

Negnevitsky Chapter 4.

9.1 Fuzzy Linguistic variables and hedges

A linguistic variable is used to describe a term or concept with vague or fuzzy values. These values
are represented as fuzzy sets (e.g. Tall).

Hedges are fuzzy set quali�ers used to modify the shape of fuzzy sets. Hedges perform math-
ematical operations of concentration by reducing the degree of membership of fuzzy elements,
dilation by increasing the degree of membership and intensi�cation by increasing the degree of
membership above 0.5 and decreasing those below 0.5.

11

9.2 Fuzzy Reasoning 9 LECTURE 2 NOVEMBER 2006

Figure 4: Examples of Hedges

Hedge formulae

Figure 5: Representation of Hedges

9.2 Fuzzy Reasoning

Zadeh (1973) suggested capturing human knowledge using Fuzzy Rules. A Fuzzy Rule can be
de�ned as a conditional statement of the form:

IF x is A THEN y is B,
where x and y are linguistic variables; and A and B are linguistic values, determined by fuzzy

sets on the universe of discourses X and Y , respectively. For example:
IF objectWeight is heavy THEN e�ortToLift is high,
uses a linguistic variable, objectWeight, can include the fuzzy sets light, medium and heavy

to describe weight. Separate rules are not necessary for cut-o� points. In practice, Fuzzy expert
systems merge the rules and reduce the number of rules by at least 90% !

In a fuzzy system, all rules �re to some degree, or in other words they �re partially. If the
antecedent is true to some degree of membership, then the consequent is also true to that same
degree.

Monotonic Selection The value of the output or a truth membership grade of the rule con-
sequent can be estimated directly from a corresponding truth membership grade in the

12

10 LECTURE 7 NOVEMBER 2006 9.3 Mamdani Method

antecedent. This form of fuzzy inference uses a method called monotonic selection.

9.3 Mamdani Method

The most commonly used fuzzy inference technique is the Mamdani method. Professor Ebrahim
Mamdani of London University built one of the �rst fuzzy systems to control a steam engine and
boiler combination. He applied a set of fuzzy rules supplied by experienced human operators in
1975.

Mamdani 4-step method:

1. Fuzzi�cation of the input variables,

2. Rule evaluation,

3. Aggregation of the rule outputs,

4. Defuzzi�cation.

9.4 Sugeno Fuzzy Inference

Mamdani-style inference, requires us to �nd the centroid of a two-dimensional shape by integrating
across a continuously varying function. In general, this process is not computationally e�cient.

Michio Sugeno suggested to use a single spike, a fuzzy singleton, as the membership function
of the rule consequent. This is a fuzzy set with a membership function that is unity at a single
particular point on the universe of discourse and zero everywhere else.

Sugeno-style fuzzy inference is very similar to the Mamdani method. Sugeno changed only a
rule consequent. He used a mathematical function of the input variable (instead of a fuzzy set).

9.5 Mamdani versus Sugeno

Mamdani method is widely accepted for capturing expert knowledge. It allows us to describe the
expertise in more intuitive, more human-like manner. However, Mamdani-type fuzzy inference
entails a substantial computational burden.

Sugeno method is computationally e�cient and works well with optimisation and adaptive
techniques, which makes it very attractive in control problems, particularly for dynamic nonlinear
systems.

10 Lecture 7 November 2006

Negnevitsky Chapter 4.

10.1 Service Centre case study

Steps:

1. Specify the problem and de�ne linguistic variables.
There are four: average waiting time, repair utilisation factor, number of servers, initial
number of spare parts.

2. Determine fuzzy sets.

3. Elicit and construct fuzzy rules.

4. Encoding.

5. Evaluate and tune.

13

10.2 Tuning Fuzzy Systems 11 LECTURE 14 NOVEMBER 2006

10.2 Tuning Fuzzy Systems

• Review model input and output variables, and if required rede�ne their ranges.

• Review the fuzzy sets, and if required de�ne additional sets on the universe of discourse.
The use of wide fuzzy sets may cause the fuzzy system to perform roughly.

• Provide su�cient overlap between neighbouring sets. It is suggested that triangle-to-triangle
and trapezoid-to-triangle fuzzy sets should overlap between 25% to 50% of their bases.

• Review the existing rules, and if required add new rules to the rule base.

• Examine the rule base for opportunities to write hedge rules to capture the pathological
behaviour of the system.

• Adjust the rule execution weights. Most fuzzy logic tools allow control of the importance of
rules by changing a weight multiplier.

• Revise shapes of the fuzzy sets. In most cases, fuzzy systems are highly tolerant of a shape
approximation.

11 Lecture 14 November 2006

Negnevitsky Chapter 7.

11.1 Genetic Programming

Any computer program is a sequence of operations (functions) applied to values (arguments).
Di�erent programming languages may include di�erent types of statements and operations,

and have di�erent syntactic restrictions.
Since genetic programming manipulates programs by applying genetic operators, a program-

ming language should permit a computer program to be manipulated as data and the newly
created data to be executed as a program.

For these reasons, LISP was chosen as the main language for genetic programming.

11.2 Pythagoras Theorem example

Steps required to set up a Genetic Programming run:

1. Determine the set of terminals. The terminals correspond to the inputs of the computer
program to be discovered. Our program takes two inputs, a and b.

2. Select the set of primitive functions. The functions can be presented by standard arith-
metic operations, standard programming operations, standard mathematical functions, log-
ical functions or domain-speci�c functions. Our program will use four standard arithmetic
operations +, -, * and ÷, and one mathematical function

√
.

3. De�ne the �tness function. A �tness function evaluates how well a particular computer
program can solve the problem. For our problem, the �tness of the computer program can
be measured by the error between the actual result produced by the program and the correct
result given by the �tness case.

4. Decide on the parameters for controlling the run. For controlling a run, genetic programming
uses the same primary parameters as those used for Genetic Algorithms. They include the
population size and the maximum number of generations to be run.

5. Choose the method for designating a result of the run. It is common practice in genetic
programming to designate the best-so-far generated program as the result of a run.

14

12 LECTURE 16 NOVEMBER 2006

The run of genetic programming starts with a random generation of an initial population of
computer programs. In the initial population, all computer programs usually have poor �tness,
but some individuals are more �t than others.

Crossover and Mutation operations are performed on succeeding generations and the �tness
increased.

12 Lecture 16 November 2006

Negnevitsky Chapter 7.

12.1 Evolutionary Approach

Intelligence can be de�ned as the capability of a system to adapt its behaviour to an ever-changing
environment (to evolve).

Evolutionary computation simulates evolution on a computer.
According to Alan Turing, the form or appearance of a system is irrelevant to its intelligence.
The result of such a simulated evolutionary process is a series of optimisation algorithms,

usually based on a simple set of rules.
Optimisation iteratively improves the quality of solutions until an optimal, or at least feasible,

solution is found.

Evolutionary approach The evolutionary approach is based on computational models of nat-
ural selection and genetics. We call them evolutionary computation, an umbrella term that
combines genetic algorithms, evolution strategies and genetic programming.

Evolutionary computation simulation: All methods of evolutionary computation simulate natu-
ral evolution by creating a population of individuals, evaluating their �tness, generating a new
population through genetic operations, and repeating this process a number of times.

12.2 Genetic Algorithms

A genetic algorithm (GA) is a search technique used to �nd true or approximate solutions to
(combinatorial) optimization and search problems. Genetic algorithms are categorized as global
search heuristics. Genetic algorithms are a particular class of evolutionary algorithms that use
techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover
(also called recombination).

Steps:

1. Represent the problem variable domain as a chromosome of a �xed length, choose the size of
a chromosome population N , the crossover probability pc and the mutation probability pm.

2. De�ne a �tness function to measure the performance, or �tness, of an individual chromosome
in the problem domain. The �tness function establishes the basis for selecting chromosomes
that will be mated during reproduction.

3. Randomly generate an initial population of chromosomes of size N : x1, x2, . . . , xN .

4. Calculate the �tness of each individual chromosome: f(x1), f(x2), . . . , f(xN).

5. Select a pair of chromosomes for mating from the current population. Parent chromosomes
are selected with a probability related to their �tness.

6. Create pair of o�spring chromosomes by applying genetic operators - crossover & mutation.

7. Place the created o�spring chromosomes in the new population.

15

13 LECTURE 21 NOVEMBER 2006

8. Repeat Step 5 until the size of the new chromosome population becomes equal to the size of
the initial population, N .

9. Replace the initial (parent) chromosome population with the new (o�spring) population.

10. Go to Step 4, and repeat the process until the termination criterion is satis�ed.

GA represents an iterative process. Each iteration is called a generation. A typical number of
generations for a simple GA can range from 50 to over 500. The entire set of generations is called
a run.

Because GAs use a stochastic search method, the �tness of a population may remain stable
for a number of generations before a superior chromosome appears.

Crossover is a genetic operator used to vary the programming of a chromosome or chromosomes
from one generation to the next. It is an analogy to reproduction and biological crossover,
upon which genetic algorithms are based.

Mutation is a genetic operator used to maintain genetic diversity from one generation of a
population of chromosomes to the next. It is analogous to biological mutation.
The classic example of a mutation operator involves a probability that an arbitrary bit in a
genetic sequence will be changed from its original state. A common method of implementing
the mutation operator involves generating a random variable for each bit in a sequence. This
random variable tells whether or not a particular bit will be modi�ed.

Termination A common practice is to terminate a GA after a speci�ed number of generations
and then examine the best chromosomes in the population. If no satisfactory solution is
found, the GA is rerun.

13 Lecture 21 November 2006

Negnevitsky Chapter 7.
A simple example will help us to understand how a GA works.
Maximum value: Let us �nd the maximum value of the function (15x− x2) where parameter

x varies between 0 and 15. For simplicity, we may assume that x takes only integer values.
Thus, chromosomes can be built with only four genes (a binary number with four digits).
Suppose that the size of the chromosome population N is 6, the crossover probability pc equals

0.7, and the mutation probability pm equals 0.001. The �tness function in our example is de�ned
by: f(x) = 15x− x2.

In natural selection, only the �ttest species can survive, breed, and thereby pass their genes on
to the next generation. GAs use a similar approach, but unlike nature, the size of the chromosome
population remains unchanged from one generation to the next.

In this example, the ratio of the individual chromosome's �tness to the population's total
�tness, determines the chromosome's chance of being selected for mating. The mechanism is
similar to spinning a roulette wheel where the �tness ratios determine how large a segment of
the wheel is assigned to each chromosome. The chromosomes average �tness improves from one
generation to the next.

Crossover, In our example:

• We have an initial population of 6 chromosomes.

• To establish the same population in the next generation, the roulette wheel would be spun
six times.

• Once a pair of parent chromosomes is selected, the crossover operator is applied.

• The crossover operator randomly chooses a crossover point where two parent chromosomes
�break�, and then exchanges the chromosome parts after that point.

16

14 LECTURE 23 NOVEMBER 2006

• As a result, two new o�spring are created.

• If a pair of chromosomes does not cross over, then the chromosome cloning takes place, and
the o�spring are created as exact copies of each parent.

Mutation Operator :

• Mutation is a change in the gene.

• Mutation is a background operator.

• Its role is to provide a guarantee that the search algorithm is not trapped on a local optimum.

• The mutation operator �ips a randomly selected gene in a chromosome.

• The mutation probability is quite small in nature, and is kept low for GAs, typically in the
range between 0.001 and 0.01.

14 Lecture 23 November 2006

Machine Learning, Mitchell, Chapter 1

14.1 Machine Learning

Three niches for machine learning:

1. Data mining - using historical data to improve decisions (e.g. medical records → medical
knowledge).

2. Software applications which cannot be programmed by hand (e.g. autonomous driving,
speech recognition).

3. Self customizing programs (e.g. newsreader that learns user interests, adaptive spam �lters).

De�nition: A computer program is said to learn from experience E with respect to come class
of tasks T and performance measure P , if its performance at tasks in T , as measured by P ,
improves with experience E.

14.2 Checkers learning program

• Task T : Playing Checkers.

• Performance Measure P : Percent of games won in the world tournament.

• Training Experience E: Games played against self.

• Target Function: V : Board→ <.

• Target Function Representation: V̂ (b) = w0 + w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6.
Where:

� x1: the number of black pieces on the board.

� x2: the number of red pieces on the board.

� x3: the number of black kings on the board.

� x4: the number of red kings on the board.

� x5: the number of black pieces threatened by red (i.e. which can be captured on red's
next turn).

17

16 LECTURE 30 NOVEMBER 2006

� x6: the number of red pieces threatened by black.

� and w0 . . . w6 are numerical coe�cients, or weights, to be chosen by the learning al-
gorithm. These can be re�ned using the least mean squares (LMS) training rule. See
Mitchell pages 5-14.

15 Lecture 28 November 2006

Machine Learning, Mitchell, Chapter 2

15.1 Concept Learning and General-to-Speci�c Ordering

• Concept learning can be cast as a problem of searching through a large prede�ned space of
potential hypotheses.

• The general-to-speci�c partial ordering of hypotheses, which can be de�ned for any concept
learning problem, provides a useful structure for organizing the search through the hypothesis
space.

• The Find-S algorithm utilizes this general-to-speci�c ordering, performing a speci�c-to-
general search through the hypothesis space along one branch of the partial ordering, to
�nd the most speci�c hypothesis consistent with the training examples.

15.2 Find-S Algorithm

1. Initialize h to the most speci�c hypothesis in H

2. For each positive training instance x

(a) For each attribute constraint ai in h

i. If the constraint ai is satis�ed by x then do nothing
Else replace ai in h by the next most general constraint that is satis�ed by x

3. Output hypothesis h

16 Lecture 30 November 2006

Machine Learning, Mitchell, Chapter 2

16.1 Inductive Learning

• The Candidate-Elimination algorithm utilizes the general-to-speci�c ordering to compute the
version space (the set of all hypotheses consistent with the training data) by incrementally
computing the set of maximally speci�c (S) and maximally general (G) hypotheses.

• Because the S and G sets delimit the entire set of hypotheses consistent with the data, they
provide the learner with a description of its uncertainty regarding the exact identity of the
target concept.

• Version spaces and the Candidate-Elimination algorithm provide a useful conceptual frame-
work for studying concept learning. However, this learning algorithm is not robust to noisy
data or to situations in which the unknown target concept is not expressible in the provided
hypothesis space.

18

17 LECTURE 5 DECEMBER 2006 16.2 Candidate-Elimination Algorithm

• Inductive learning algorithms are able to classify unseen examples only because of their
implicit inductive bias for selecting one consistent hypothesis over another. The bias asso-
ciated with the Candidate-Elimination algorithm is that the target concept can be found
in the provided hypothesis space. The output hypotheses and classi�cations of subsequent
instances follow deductively from this assumption together with the observed training data.

• An unbiased learner cannot make inductive leaps to classify unseen examples.

16.2 Candidate-Elimination Algorithm

• Initialize G to the set of maximally general hypotheses in H.

• Initialize S to the set of maximally speci�c hypotheses in H.

• For each training example d, do

1. If d is a positive example

(a) Remove from G any hypothesis inconsistent with d

(b) For each hypothesis s in S that is not consistent with d

i. Remove s from S

ii. Add to S all minimal generalizations h of s such that h is consistent with d,
and some member of G is more general than h

iii. Remove from S any hypothesis that is more general than any other hypothesis
in S

2. If d is a negative example

(a) Remove from S any hypothesis inconsistent with d

(b) For each hypothesis g in G that is not consistent with d

i. Remove g from G

ii. Add to G all minimal specializations h of g such that h is consistent with d,
and some member of S is more speci�c than h

iii. Remove from G any hypothesis that is less general than any other hypothesis
in G

The main application for concept learning has been in the �eld of Medicine.

17 Lecture 5 December 2006

Machine Learning, Mitchell, Chapter 3

17.1 Decision Trees

Decision tree learning provides a practical method for concept learning and for learning other
discrete-valued functions. The ID3 family of algorithms infers decision trees by growing them
from the root downwards, greedily selecting the next best attribute for each new decision branch
added to the tree.

Entropy can be de�ned as a measurement of the di�culty of representing something. A set of
data with high entropy requires more bits to encode it than a set with low entropy.

Use Decision Trees when:

• Discrete Values Attributes - preferably of small set size.

• Disjunctive hypothesis required (using OR).

• Possibly noisy training data (incorrect examples).

Top down induction Decision Trees.
Try to reduce the search space as much as possible - preferably to equally sized subsets.

19

19 LECTURE 12 DECEMBER 2006

Figure 6: Alternate Questions

18 Lecture 7 December 2006

Machine Learning, Mitchell, Chapter 3
Use entropy to measure how much information is needed to describe data set. While noise has

high entropy, structured data (e.g. A-Z 10,000 times) has low.
So pose questions in decision trees which split the search space as evenly as possible between

their child nodes. However, far prefer questions which reduce entropy. If a question were found
for the example pictured where the answers were [29+,0-] and [0+,35-] that would be ideal. Fully
classi�es training data and thus minimizes entropy.

Entropy of data can be thought of as the number of bits needed to represent the information.
For example, if all the training examples were positive then that would be easy to represent.

If roughly half were negative then that is more di�cult to encode.
Entropy(S) = (−P⊕log2P⊕)(−P	log2P)1

Information Theory is the source of this concept of entropy.

19 Lecture 12 December 2006

Machine Learning, Mitchell, Chapter 3

19.1 ID3

Greedy algorithm - always ask the question which most reduces the entropy of the information
set. Quickly �nds solution, but may �nd a local minimum.

Inductive Bias Shorter trees are preferred over longer trees. Trees that place high information
gain attributes close to the root are preferred over those that do not.

Occam's Razor: Prefer the simplest hypothesis that �ts the data (lex parsimoniae law of suc-
cinctness).

ID3 searches a complete hypothesis space (i.e. the space of decision trees can represent any
discrete-valued function de�ned over discrete-values instances). It thereby avoids the major di�-
culty associated with approaches that consider only restricted sets of hypotheses: that the target
function might not be present in the hypothesis space.

The inductive bias implicit in ID3 includes a preference for smaller trees; that is, its search
through the hypothesis space grows the tree only as large as needed in order to classify the available
training examples.

Over�tting the training data is an important issue in decision tree learning. Because the
training examples are only a sample of all possible instances, it is possible to add branches to the
tree that improve performance on the training examples while decreasing performance on other
instances outside this set. Methods for post-pruning the decision tree are therefore important to

1P⊕ proportion of training examples which are positive; P	 proportion of training examples which are negative;

log2
1
2

= −1.

20

19 LECTURE 12 DECEMBER 2006 19.2 Rule post-pruning

avoid over�tting in decision tree learning (and other inductive inference methods that employ a
preference bias).

19.2 Rule post-pruning

1. Infer the decision tree from the training set, growing the tree until the training data is �t as
well as possible and allowing over�tting to occur.

2. Convert the learned tree into an equivalent set of rules by creating one rule for each path
from the root node to a leaf node.

3. Prune (generalize) each rule by removing any preconditions that result in improving its
estimated accuracy.

4. Sort the pruned rules by their estimated accuracy, and consider them in this sequence when
classifying subsequent instances.

Advantages of converting decision trees to rules before pruning:

1. Converting to rules allows distinguishing among the di�erent contexts in which a decision
node is used. Because each distinct path through the decision tree node produces a distinct
rule, the pruning decision regarding that attribute test can be made di�erently for each
path. In contrast, if the tree itself were pruned, the only two choices would be to remove
the decision node completely, or to retain it in its original form.

2. Converting to rules removes the distinction between attribute tests that occur near the root
of the tree and those that occur near the leaves. Thus, we avoid messy bookkeeping issues
such as how to reorganize the tree if the root node is pruned while retaining part of the
sub-tree below this test.

3. Converting to rules improves readability. Rules are often easier for people to understand.

19.3 ID3 Algorithm

ID3(Examples, Target_attribute, Attributes)
Examples are the training examples. Target_attribute is the attribute whose value is to be

predicted by the tree. Attributes is a list of other attributes that may be tested by the learned
decision tree. Returns a decision tree that correctly classi�es the given Examples.

1. Create a Root node for the tree

2. If all Examples are positive, Return the single-node tree Root, with label = +

3. If all Examples are negative, Return the single-node tree Root, with label = -

4. If Attributes is empty, Return the single-node tree Root, with label = the most common
value of Target_attribute in Examples

5. Otherwise begin:

(a) A← the attribute from Attributes that best2 classi�es Examples

(b) The decision attribute for Root ← A

(c) For each possible value vi of A:

i. Add a new branch below Root, corresponding to the test A = Vi

ii. Let Examplesvi be the subset of Examples that have value vi for A

2The best attribute is the one with the highest information gain.

21

19.4 Extensions to ID3 20 LECTURE 16 JANUARY 2007

iii. If Examplesvi is empty

A. Then below this new branch add a leaf node with label = the most common
value of Target_attribute in Examples

B. Else below this new branch add the sub-tree ID3(Examplesvi
, Target_attribute,

Attributes−{A})

19.4 Extensions to ID3

Continuous Valued Attribute Construct discrete-valued attribute that represents continuous
values. Create Boolean attributes ⇒ between negative to positive transitions (and positive
to negative transitions). E.g. in a range of temperatures.

Attributes with many values Use a Gain ratio (divide by the number of possible values in the
entropy reduction calculation) to remove bias in favors of such attributes.

Attributes with costs Divide Gain ratio by cost to learn consistent tree with a low expected
cost. E.g. Blood Tests are more expensive to perform than X-rays.

Unknown Attribute Values Use training example anyway ⇒ assign values most consistent
with those in other examples (e.g. most common or average).

20 Lecture 16 January 2007

Machine Learning, Mitchell, Chapter 4;
Arti�cial Intelligence, Negnevitsky, Chapter 6.

20.1 Arti�cial Neural Networks

An Arti�cial Neural Network (ANN) consists of a number of very simple and highly interconnected
processors, called neurons, which are analogous to the biological neurons in the brain. The neurons
are interconnected by weighted links that pass signals from one neuron to another. Each link has a
numerical weight associated with it. Weights are the basic means of long-term memory in ANNs.
They express the strength or importance of each neuron input. A neural network 'learns' from
repeated adjustments of these weights.

20.1.1 Biological Motivation

ANNs are modelled on the human brain, which consists of 1011 neurons, each connected, on
average to 104 others.

The fastest biological neuron switching times are known to be on the order of 10−3 seconds
(quite slow compared to computer switching speeds of 10−10 seconds). Yet humans are able to
make complex decisions surprisingly quickly.

For example, it requires approximately 10−1 seconds to visually recognise your mother. Notice
that the sequence of neuron �rings than can take place during this 10−1 second interval cannot
possibly be longer than a few hundred steps, given the switching speed of single neurons. This
observation has led many to believe that the information-processing abilities of such biological
systems must follow from highly parallel processes.

One motivation for ANN systems is to capture this kind of highly parallel computation.

20.1.2 Appropriate Problems for ANNs

ANN learning is well-suited to problems in which the training data corresponds to noisy, complex
sensor data, such as inputs from cameras or microphones.

It is appropriate for problems with the following characteristics:

22

20 LECTURE 16 JANUARY 2007 20.1 Arti�cial Neural Networks

Figure 7: Perceptron

• Instances are represented by many attribute-value pairs.

• The target function output may be discrete-valued, real-valued or a vector of several real-
or discrete-valued attributes.

• The training examples may contain errors.

• Long training times are acceptable.

• Fast evaluation of the learned target function may be required.

• The ability of humans to understand the learned target function is not important.

Examples:

• Driving a car (ALVINN)

• Speech Recognition (automated telephone systems)

• Image Classi�cation (Security, Medical)

• Financial Prediction (Learn investor behaviour in response to newspaper articles)

20.1.3 Perceptrons

A Perceptron is an arti�cial neuron. It combines the values and weightings of its inputs into a
single output.

o(x1, . . . , xn)

{
1 if w0 + w1x1 + · · ·+ wnxn > 0
−1 otherwise

Sometimes we'll use simpler vector notation:

o(~x)

{
1 if ~w × ~x > 0
−1 otherwise

The Perceptron is a single layer neural network whose weights and biases could be trained to
produce a correct target vector when presented with the corresponding input vector. The training
technique used is called the perceptron learning rule. The perceptron generated great interest
due to its ability to generalize from its training vectors and work with randomly distributed
connections. Perceptrons are especially suited for simple problems in pattern classi�cation.

23

21 LECTURE 18 JANUARY 2007

21 Lecture 18 January 2007

Machine Learning, Mitchell, Chapter 4

21.1 Perceptron Training Rule

wi ← wi + ∆wi

where
∆wi = η(t− o)xi

Where:

• t = c(~x) is target value

• o is perceptron output

• η is small constant (e.g. 0.01) called learning rate

The learning rate is often decreased when the remaining error is small to �ne-tune the results of
training.

Least Mean Square (LMS) rule used in calculating Gradient Descent. Work out gradient (in
error curve) and choose change in weights which will get you down the slope as quickly as possible.
(E.g. If the error curve is given by the formula y = ax2 + bx + c then, to get the slope at any
point, di�erentiate getting dy

dx = 2ax + b)

21.2 Gradient-Descent Algorithm

Gradient-Descent(training_examples, η)
Each training example is a pair of the form 〈~x, t〉, where ~x is the vector of input values, and t

is the target output value. η is the learning rate (e.g., 0.05).

• Initialize each wi to some small random value

• Until the termination condition is met, Do

� Initialize each ∆wi to zero.

� For each 〈~x, t〉 in training_examples, Do

∗ Input the instance ~x to the unit and compute the output o

∗ For each linear unit weight wi, Do
∆wi ← ∆wi + η(t− o)xi

∗ For each linear unit weight wi, Do
wi ← wi + ∆wi

21.3 Summary

Perceptron training rule guaranteed to succeed if

• Training examples are linearly separable

• Su�ciently small learning rate η

Linear unit training rule uses gradient descent

• Guaranteed to converge to hypothesis with minimum squared error

• Given su�ciently small learning rate η

• Even when training data contains noise

• Even when training data not separable by H

24

22 LECTURE 23 JANUARY 2007

22 Lecture 23 January 2007

Machine Learning, Mitchell, Chapter 4

22.1 Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satis�ed

1. Compute the gradient ∇ED [~w]

2. ~w ← ~w − η∇ED [~w]

Incremental mode Gradient Descent:
Do until satis�ed

• For each training example d in D

1. Compute the gradient ∇Ed [~w]

2. ~w ← ~w − η∇Ed [~w]

ED[~w] ≡ 1
2

∑
d∈D

(td − od)2

Ed[~w] ≡ 1
2
(td − od)2

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η
made small enough.

22.2 Sigmoid Unit

Figure 8: Sigmoid Unit

σ(x) is the sigmoid function 1
1+e−x .

Nice property dσ(x)
dx = σ(x)(1− σ(x)).

We can derive gradient descent rules to train

• One sigmoid unit

• Multilayer networks of sigmoid units → Backpropagation

25

22.3 Backpropagation Algorithm 22 LECTURE 23 JANUARY 2007

22.3 Backpropagation Algorithm

The summary of the technique is as follows:

1. Present a training sample to the neural network.

2. Compare the network's output to the desired output from that sample. Calculate the error
in each output neuron.

3. For each neuron, calculate what the output should have been, and a scaling factor, how
much lower or higher the output must be adjusted to match the desired output. This is the
local error.

4. Adjust the weights of each neuron to lower the local error.

5. Assign "blame" for the local error to neurons at the previous level, giving greater responsi-
bility to neurons connected by stronger weights.

6. Repeat the steps above on the neurons at the previous level, using each one's "blame" as its
error.

Initialize all weights to small random numbers.
Until satis�ed, Do

• For each training example, Do

1. Input the training example to the network and compute the network outputs

2. For each output unit k
δk ← ok(1− ok)(tk − ok)

3. For each hidden unit h
δh ← oh(1− oh)

∑
k∈outputs

wh,kδk

4. Update each network weight wi,j

wi,j ← wi,j + ∆wi,j

where
∆wi,j = ηδjxi,j

Points to note:

• Gradient descent over entire network weight vector.

• Easily generalized to arbitrary directed graphs.

• Will �nd a local, not necessarily global error minimum.

� In practice, often works well (can be run multiple times)

• Often include weight momentum α

∆wi,j(n) = ηδjxi,j + α∆wi,j(n− 1)

• Minimizes error over training examples.

� Will it generalize well to subsequent examples?

• Training can take thousands of iterations → slow!

• Using network after training is very fast.

26

24 LECTURE 30 JANUARY 2007

23 Lecture 25 January 2007

Machine Learning, Mitchell, Chapter 4

Error plain is continuous so long as sigmoid units are used in the ANN.

The hidden layer(s) require enough neurons to encode all of the states that the ANN is to
learn. With a single hidden layer of n neurons 2n states can be learned. With two hidden layers,
each of n neuron, 2nn

states can be learned.

An ANN with two hidden layers takes much longer to teach than one with only a single hidden
layer.

Every Boolean function can be represented by a single hidden layer. Every bounded continuous
function can be approximated with arbitrarily small error, by network with one hidden layer. Any
function can be approximated to arbitrary accuracy by a network with two hidden layers.

Rule of thumb is to start with a single hidden layer and add a second if ANN is not learning
properly from training examples.

23.1 Convergence of Back-propagation

Gradient descent to some local minimum

• Perhaps not global minimum...

• Add momentum

• Stochastic gradient descent

• Train multiple nets with di�erent initial weights

Nature of convergence

• Initialize weights near zero

• Therefore, initial networks near-linear

• Increasingly non-linear functions possible as training progresses

24 Lecture 30 January 2007

Machine Learning, Mitchell, Chapter 5

24.1 Evaluating Hypotheses

Key points:

• Sample error, true error

• Con�dence intervals for observed hypothesis error

• Estimators

• Binomial distribution, Normal distribution, Central Limit Theorem

• Paired t tests

• Comparing learning methods

27

24.2 Sample Error and True Error 24 LECTURE 30 JANUARY 2007

24.2 Sample Error and True Error

The true error of hypothesis h with respect to target function f and distribution D is the
probability that h will misclassify an instance drawn at random according to D. errorD(h) ≡
Prx∈D [f(x) 6= h(x)].

The sample error of h with respect to target function f and data sample S is the proportion
of examples h misclassi�es errorS(h) ≡ 1

nΣx∈Sδ(f(x) 6= h(x)). Where δ(f(x) 6= h(x)) is 1 if
f(x) 6= h(x), and 0 otherwise.

1. Bias: If S is training set, errorS(h) is optimistically biased bias ≡ E[errorS(h)]−errorD(h)
For unbiased estimate, h and S must be chosen independently

2. Variance: Even with unbiased S, errorS(h) may still vary from errorD(h)

With approximately 95% probability, errorD(h) lies in the interval

errorS(h)±
√

errorS(h)(1−errorS(h))
n (i.e. Standard Deviation).

With approximately N% probability, errorD(h) lies in the interval

errorS(h)± zN

√
errorS(h)(1−errorS(h))

n where

N%: 50% 68% 80% 90% 95% 98% 99%
zN : 0.67 1.00 1.28 1.64 1.96 2.33 2.58

24.3 Normal Distribution approximates Binomial

errorS(h) follows a Binomial distribution, with

• mean µerrorS(h) = errorD(h)

• standard deviation σerrorS(h)

σerrorS(h) =

√
errorD(h)(1− errorD(h))

n

Approximate this by a Normal distribution with

• mean µerrorS(h) = errorD(h)

• standard deviation σerrorS(h)

σerrorS(h) ≈
√

errorD(h)(1− errorD(h))
n

24.4 Normal Probability Distribution

p(x) =
1√

2πσ2
e−

1
2 (x−µ

σ)2

The probability that X will fall into the interval (a, b) is given by∫ b

a

p(x)dx

• Expected or mean value of X, E[X] = µ.

• Variance of X is V ar(X) = σ2.

• Standard deviation of X, σX = σ.

28

26 LECTURE 6 FEBRUARY 2007 24.5 Central Limit Theorem

24.5 Central Limit Theorem

Consider a set of independent, identically distributed random variables Y1n, all governed by an
arbitrary probability distribution with mean µ and �nite variance σ2. De�ne the sample mean,

Ȳ ≡ 1
n

n∑
i=1

Yi

Central Limit Theorem. As n → ∞, the distribution governing Ȳ approaches a Normal distribu-

tion, with mean µ and variance σ2

n .

25 Lecture 1 February 2007

Machine Learning, Mitchell, Chapter 5

25.1 Di�erence Between Hypotheses

Comparing the relative e�ectiveness of two learning algorithms is an estimation problem that
is relatively easy when data and time are unlimited, but more di�cult when these resources
are limited. One possible approach is to run the learning algorithms on di�erent subsets of the
available data, testing the learned hypotheses on the remaining data, then averaging the results
of these experiments.

When you subtract a normal distribution from another you get a normal distribution as the re-
sult. Subtracting estimated errors gives a new normal distribution with a new Standard Deviation,
con�dence interval, etc.

25.2 Paired t test

Given two paired sets Xi and Yi of n measured values, the paired t-test determines whether they
di�er from each other in a signi�cant way under the assumptions that the paired di�erences are
independent and identically normally distributed.

To apply the test, let X̂i = i −X) and Ŷi = i − Y).
then de�ne t by

t = (X − Y)

√
n(n− 1)

Σn
i=1(X̂i − Ŷi)2

26 Lecture 6 February 2007

Machine Learning, Mitchell, Chapter 6

26.1 Bayesian Learning

Bayes Theorem

P (h|D) =
P (D|h)P (h)

P (D)

P (h) = prior probability of hypothesis h (e.g. h is that someone has the common cold; then
this is based on the number of people who have common cold in the general population).

P (D) = prior probability of training data D (e.g. D is that the person has a cough; then this
is based on the number of people in the general population who have a cough).

P (h|D) = probability of h given D (e.g. probability that someone has the common cold given
that they have a cough).

29

27 LECTURE 8 FEBRUARY 2007

P (D|h) = probability of D given h (e.g. probability that someone has a cough given that they
have the common cold).

The �nal answer - the estimated probability that a patient has the common cold given that
they have a cough - is known as the revised probability or the posterior probability.

Bayesian methods provide the basis for probabilistic learning methods that accommodate (and
require) knowledge about the prior probabilities of alternative hypotheses and about the probabil-
ity of observing various data given the hypothesis. Bayesian methods allow assigning a posterior
probability to each candidate hypothesis, based on these assumed priors and observed data.

27 Lecture 8 February 2007

Machine Learning, Mitchell, Chapter 6

27.1 Choosing Hypotheses

Generally we want to choose the most probably hypothesis given the training data.

Maximum a posteriori hypothesis hMAP : argmaxh∈HP (h|D) = argmaxh∈H
P (D|h)P (h)

P (D) =
argmaxh∈HP (D|h)P (h).

If we assume P (hi) = P (hj) then we can further simplify and choose the Maximum Likelihood
hML: argmaxhi∈HP (D|hi).

27.2 Probability Formulae

• Product Rule: Probability (A ∧ B) of a conjunction of two events A and B: P (A ∧ B) =
P (A|B)P (B) = P (B|A)P (A).

• Sum Rule: Probability (A ∨ B) of a disjunction of two events A and B: P (A ∨ B) =
P (A) + P (B)− P (A ∧B).

• Theorem of total probability: If events A1, . . . , Anare mutually exclusive with Σn
i=1P (Ai) = 1

then, for any event B: P (B) = Σi=1P (B|Ai)P (Ai).

27.3 Find-S

Consider the usual concept learning task

• Instance space X, hypothesis space H, training examples D.

• Consider the Find-S learning algorithm (outputs the most speci�c hypothesis from the
version space V SH,D).

1. Assume a �xed set of instances 〈x1, . . . , xm〉

2. Assume D is the set of classi�cations D = 〈c(x1), . . . , c(xm)〉

3. Choose P (D|h):

(a) P (D|h) = 1 if h is consistent with D

(b) P (D|h) = 0 otherwise

4. Choose P (h) to be uniform distribution

(a) P (h) = 1
|H| for all h in H

5. Then

30

28 LECTURE 13 FEBRUARY 2007

P (h|D) =

{
1

|V SH,D| if h is consistent with D

0 otherwise

The Bayesian framework allows one way to characterise the behaviour of learning algorithms
(e.g. Find-S), even when the learning algorithm does not explicitly manipulate probabilities. By
identifying probability distributions P (h) and P (D|h) under which the algorithm outputs optimal
(i.e. MAP) hypotheses, we can characterise the implicit assumptions under which this algorithm
behaves optimally.

28 Lecture 13 February 2007

Machine Learning, Mitchell, Chapter 6
Can characterise learning algorithms using equivalent MAP learners and making the prior

assumptions explicit. Assumptions for the Candidate Elimination Algorithm turn out to be the
same as for Find-S.

28.1 Learning a Real Valued Function

Consider any real-valued target function f .
Training examples 〈xi, di〉, where di is noisy training value.

• di = f(xi) + ei

• ei is random variable (noise) drawn independently for each xi according to some Gaussian
distribution with mean= 0

Then the maximum likelihood hypothesis hML is the one that minimizes the sum of squared errors:
hML = argminh∈HΣm

i=1(di − h(xi))2.

28.2 Learning to Predict Probabilities

Consider predicting survival probability from patient data.
Training examples 〈xi, di〉, where di is 1 or 0.
Want to train a neural network to outputs probability given xi (not a 0 or 1).
In this case can show hML = argmaxh∈HΣm

i=1diln h(xi) + (1− di)ln(1− h(xi)).

28.3 Minimum Description Length

Occam's razor: prefer the shortest hypothesis.
MDL: prefer the hypothesis h that minimizes hMDL = argminh∈HLC1(h) + LC2(D|h) where

LC(x) is the description length of x under encoding C.
In other words, prefer the hypothesis that minimizes length(h) + length(misclassifications).

28.4 Most Probable Classi�cation of New Instances

So far we've sought the most probable hypothesis given the data (i.e. hMAP).
Given a new instance x, what is its most probable classi�cation?
In general the most probable classi�cation of the new instance is obtained by combining the

predictions of all hypotheses, weighted by their posterior probabilities. If the possible classi�cation
of the new example can take on any value vj from some set V , then the probability P (vj |D) that
the correct classi�cation of the new instance is vj is just

P (vj |D) =
∑

hi∈H

P (vj |hi)P (hi|D)

The optimal classi�cation of the new instance is the value vjfor which P (vj |D) is maximum.

31

28.5 Bayes Optimal Classi�cation 29 LECTURE 15 FEBRUARY 2007

28.5 Bayes Optimal Classi�cation

argmaxvj∈V

∑
hi∈H

P (vj |hi)P (hi|D)

Let the set of possible classi�cations of the new instance V = {⊕,	}, and

P (h1|D) = .4, P (|h1) = 0, P (⊕|h1) = 1

P (h2|D) = .3, P (|h2) = 1, P (⊕|h2) = 0

P (h1|D) = .3, P (|h3) = 1, P (⊕|h3) = 0

therefore ∑
hi∈H

P (⊕|hi)P (hi|D) = .4

∑
hi∈H

P (|hi)P (hi|D) = .6

and
argmaxvj∈{⊕,	}

∑
hi∈H

P (vj |hi)P (hi|D) = 	

Any system that classi�es new instances in this way is called a Bayes Optimal Classi�er, or
Bayes optimal learner.

29 Lecture 15 February 2007

Machine Learning, Mitchell, Chapter 6

29.1 Gibbs Classi�er

The Bayes Optimal Classi�er provides the best result but can be computationally expensive if
there are many hypotheses.

Gibbs algorithm:

1. Choose one hypothesis at random, according to P (h|D).

2. Use this to classify new instance.

Surprisingly, assuming that the target concepts are drawn at random from H, according to the
prior probability distribution assumed by the learner, then the error of the Gibbs algorithm is at
worst twice that of the Bayes Optimal classi�er.

29.2 Naive Bayes Classi�er

A step up from Gibbs, this is one of the most practical learning methods.
Use it when you have moderate or large training sets and the attributes that describe instances

are conditionally independent given classi�cation.
Assume target function f :→ V , where each instance of x is described by the attributes

〈a1, a2, . . . an〉.
The most probably value of f(x) is:

vMAP = argmaxvj∈V P (a1, a2, . . . an|vj)P (vj)

The naive Bayes assumption:

32

31 LECTURE 22 FEBRUARY 2007

P (a1, a2, . . . an|vj) =
∏

i

P (ai|vj)

which gives the Naive Bayes classi�er:

vNB = argmaxvj∈V P (vj)
∏

i

P (ai|vj)

The naive Bayes learning method involves a learning step in which the various P (vj) and
P (ai|vj) terms are estimated, based on their frequencies over the training data. The set of these
estimates corresponds to the learned hypothesis. This hypothesis is then used to classify each new
instance.

Even when the attributes of the training examples are not completely conditionally indepen-
dent, naive Bayes still gives fairly good results.

Beware of attribute values with low (or no) occurrences in the training examples. Typical
solution is to use the following Bayesian estimate:

P̂ (ai|vi)←
nc + mp

n + m

where

• n is number of training examples for which v = vj ;

• nc is number of examples for which v = vj and a = ai;

• p is prior estimate for P̂ (ai|vi);

• m is weight given to prior (i.e. number of �virtual� examples).

30 Lecture 20 February 2007

Machine Learning, Mitchell, Chapter 6

30.1 Bayesian Belief Networks

A Bayesian belief network describes the probability distribution governing a set of variables by
specifying a set of conditional independence assumptions along with a set of conditional proba-
bilities. BBNs allow stating conditional independence assumptions that apply to subsets of the
variables.

Allows combining of prior knowledge about (in)dependencies among variables with observed
training data.

A BBN can be represented as a directed acyclic graph.

31 Lecture 22 February 2007

Machine Learning, Mitchell, Chapter 6

31.1 Bayesian Belief Networks

Want to have graphs with small n-degrees (numbers of arcs going into a single node). The number
of conditional probabilities is exponentially related to the number of these arcs.

Computational complexity of belief network is dependent on the structure of the graphs.

33

31.2 Expectation Maximisation (EM) Algorithm31 LECTURE 22 FEBRUARY 2007

31.1.1 Inference

How can one infer the (probabilities of) values of one or more network variables, given observed
values of others?

• Bayes net contains all information needed for this inference.

• If only one variable with unknown value, easy to infer it

• In general case, problem is NP-hard.
In practice, can succeed in many cases

• Exact inference methods work well for some network structures

• Monte Carlo3 methods �simulate" the network randomly to calculate approximate solutions.

31.1.2 Learning

Several variants of this learning task:

• Network structure might be known or unknown

• Training examples might provide values of all network variables, or just some

If structure known and observe all variables:

• Then it's easy as training a Naive Bayes classi�er

Suppose structure known, variables partially observable
Similar to training neural network with hidden units
In fact, can learn network conditional probability tables using gradient ascent!
Converge to network h that (locally) maximizes P (D|h).

31.2 Expectation Maximisation (EM) Algorithm

Repeatedly:

1. Calculate probabilities of unobserved variables, assuming h

2. Calculate new maximum likelihood hypothesis h′ E[lnP (D|h′)] where D now includes both
observed and (calculated probabilities of) unobserved variables

When structure unknown...

• Algorithms use greedy search to add/subtract edges and nodes

Note that only when there is a variance in the conditional probabilities does an edge need to be
de�ned, otherwise remove it.

Uses:

• Train Bayesian Belief Networks.

• Unsupervised Learning (AUTOCLASS).

• Learning Hidden Markov Model.

EM general-method will not be coming up in exam.

3Monte Carlo Method: Generate Random input and observe outcomes. Assume probability distribution of input

values.

34

34 LECTURE 6 MARCH 2007

32 Lecture 27 February 2007

32.1 GeNIe

The GeNIe (Graphical Network Interface) software package can be used to create decision theoretic
models intuitively using the graphical click-and-drop interface.

33 Lecture 1 March 2007

33.1 GeNIe

34 Lecture 6 March 2007

Machine Learning, Mitchell, Chapter 13

34.1 Reinforcement Learning

In computer science, reinforcement learning is a sub-area of machine learning concerned with how
an agent ought to take actions in an environment so as to maximize some notion of long-term
reward. Reinforcement learning algorithms attempt to �nd a policy that maps states of the world
to the actions the agent ought to take in those states.

The environment is typically formulated as a �nite-state Markov decision process (MDP),
and reinforcement learning algorithms for this context are highly related to dynamic program-
ming techniques. State transition probabilities and reward probabilities in the MDP are typically
stochastic but stationary over the course of the problem.

Reinforcement learning di�ers from the supervised learning problem in that correct input/output
pairs are never presented, nor sub-optimal actions explicitly corrected. Further, there is a focus
on on-line performance, which involves �nding a balance between exploration (of uncharted ter-
ritory) and exploitation (of current knowledge). The exploration vs. exploitation trade-o� in
reinforcement learning has been mostly studied through the multi-armed bandit problem.

Formally, the basic reinforcement learning model consists of:

1. a set of environment states S;

2. a set of actions A; and

3. a set of scalar "rewards" in R.

At each time t, the agent perceives its state st ∈ S and the set of possible actions A(st). It chooses
an action a ∈ A(st) and receives from the environment the new state st+1 and a reward rt+1.
Based on these interactions, the reinforcement learning agent must develop a policy π : S → A
which maximizes the quantity R = r0 + r1 + . . . + rn for MDPs which have a terminal state, or
the quantity R = Σtγ

trt for MDPs without terminal states (where γ is some "future reward"
discounting factor between 0.0 and 1.0).

Note that the target function is π : S → A, but we have no training examples in the form
〈s, a〉, training examples are of the form 〈〈s, a〉 , r〉.

Thus, reinforcement learning is particularly well suited to problems which include a long-term
versus short-term reward trade-o�. It has been applied successfully to various problems, including
robot control, elevator scheduling, telecommunications, backgammon and chess.

34.2 Markov Decision Processes

Given: Finite set of states S; A set of actions A.
At each discrete time agent observes state st ∈ S and chooses action at ∈ A.
The agent then receives immediate reward rt and state changes to st+1.

35

35 LECTURE 8 MARCH 2007

Markov assumption: st+1 = r(st, at) and rt = δ(st, at).
That is, rt and st+1 depend only on current state and action.

Functions δ and r may be non-deterministic.

Functions δ and r are not necessarily known to the agent.

35 Lecture 8 March 2007

Machine Learning, Mitchell, Chapter 13

35.1 Q Function

We might try to have agent learn the evaluation function V π∗ (which we write as V ∗)

It could then do a lookahead search to choose best action from any state s because π∗(s) =
argmaxa[r(s, a) + γV ∗(δ(s, a))].

This works well if agent knows δ : S ×A→ S and r : S ×A→ < But when it doesn't, it can't
choose actions this way.

De�ne new function very similar to V ∗.

Q(s, a) ≡ r(s, a) + γV ∗(δ(s, a))

If agent learns Q, it can choose optimal action even without knowing δ!

π∗(s) = argmaxa[r(s, a) + γV ∗(δ(s, a))]

π∗(s) = argmaxaQ(s, a)

Q is the evaluation function the agent will learn.

Note Q and V ∗ are closely related: V ∗(s) = maxa′Q(s, a′)
Which allows us to write Q recursively as Q(st, at) = r(st, at) + γmaxaQ(st+1, a

′)
Let Q̂ denote learner's current approximation to Q. Consider training rule Q̂(s, a) ← r +

maxa′Q̂(s′, a′)
where s′ is the state resulting from applying action a in state s.

35.2 Q Learning for Deterministic Worlds

For each s, a initialize table entry Q̂(s, a)← 0
Observe current state s

Do forever:

• Select an action a and execute it

• Receive immediate reward r

• Observe the new state s′

• Update the table entry for Q̂(s, a) as follows:

Q̂(s, a)← r + γmaxa′Q̂(s′, a′)

• s← s′

Q̂ converges to Q.

36

36 LECTURE 13 MARCH 2007 35.3 Non-deterministic Case

35.3 Non-deterministic Case

Q learning generalises to non-deterministic worlds.
Alter training rule to

Q̂n(s, a)← (1− αn)Q̂n−1(s, a) + αn[r + maxa′Q̂n−1(s′, a′)]

where αn = 1
1+visitsn(s,a) .

Q̂ still converges to Q.

36 Lecture 13 March 2007

Machine Learning, Mitchell, Chapter 13

36.1 Temporal Di�erence Learning

The Q learning algorithm learns by iteratively reducing the discrepancy between Q value estimates
for adjacent states. In this sense, Q learning is a special case of a general class of temporal di�erence
algorithms that learn by reducing discrepancies between estimates made by the agent at di�erent
times. We can design an algorithm that reduces discrepancies between the current state and more
distant descendants or ancestors.

In other words, the goal of learning is to make the learner's current prediction for the current
input pattern more closely match the next prediction at the next time step.

One step lookahead:
Q(1)(st, at) ≡ rt + γmaxaQ̂(st+1, a)
Why not two steps?
Q(2)(st, at) ≡ rt + γrt+1 + γ2maxaQ̂(st+2, a)
Or n?
Q(n)(st, at) ≡ rt + γrt+1 + . . . + γ(n−1)rt+1 + γnmaxaQ̂(st+n, a)
Blend all of these:
Qλ(st, at) ≡ (1− λ)

[
Q(1)(st, at) + λQ(2)(st, at) + λ2Q(3)(st, at) + . . .

]
Equivalent expression:

Qλ(st, at) = rt + γ
[
(1− λ)maxaQ̂(st, at) + λQλ(st+1, at+1)

]
TD(λ) algorithm uses above training rule.

• Sometimes converges faster than Q learning

• Converges for learning V ∗ for any 0 ≤ λ ≤ 1 (Dayan, 1992)

• Tesauro's TD-Gammon uses this algorithm

36.2 Subtleties and Ongoing Research

• Replace Q̂ table with neural net or other generalizer

• Handle case where state only partially observable

• Design optimal exploration strategies

• Extend to continuous action, state

• Learn and use δ̂ : S ×A→ S

• Relationship to dynamic programming

37

39 LECTURE 22 MARCH 2007

37 Lecture 15 March 2007

Demo of Simbrain.

38 Lecture 20 March 2007

38.1 Review of Course

In the exam there is usually a basic questions about the fundamentals of AI and the motivation
of the entire �eld.

Knowledge Representation in Expert Systems
Know the terminology: Conjunctions (AND), Disjunctions (OR), Antecedent (IF part) and

Consequence (THEN part).
Know team members and their roles in building an expert system: Domain Expert, Knowledge

Engineer, Programmer, Project Manager and end User.
Describe the Newell and Simon Model⇒ Separate Knowledge Base and Database feed Inference

engine which in turn feeds the explanation facility and user interface.
Probabilistic Reasoning
Know and be able to explain Bayes Rule.
Fuzzy Logic
De�nitely coming up in exam.
Be able to describe a problem in terms of fuzzy sets.
Compare and contrast crisp set theory (and operators) with that of fuzzy set theory.
Know about Mamdani inference method and be able to compare Sugeno method.
Terminology: Universe of Discourse (X-axis).

39 Lecture 22 March 2007

39.1 Review of Course (continued)

Genetic Algorithms
Know the main features of the Neo-Darwinian approach.
Know the steps in Basic Genetic Algorithm.
Machine Learning
History of Machine Learning is not coming up.
Know about the Inductive Learning Hypothesis (can learn from examples).
We will not be asked to write out algorithms.
The most important algorithm to know about is Candidate Elimination.
We do not need to know about Inductive Systems and Equivalent Deductive Systems.
Decision Tree Learning
Need to understand the ID-3 Learning Algorithm, and why entropy is important. Why it is

best to ask questions that maximize your information gain; cut your candidate solution space in
half.

Know about over�tting, but don't worry about the methods to detect and �x it.

Note That Arti�cial Neural Networks are the method of choice if the training data is noisy
(contains errors).

Neural Networks
Neural Networks and Fuzzy Systems are the two most important topics.
Need to be able to explain why it is preferable to use sigmoid functions rather than Perceptrons:

The continuous output allow Gradient Descent to �nd minima.
We do not need to know the back-propagation algorithm, but we do need to be able to explain

why it works with gradient descent. Reduces error by adjusting weights.

38

40 LECTURE 29 MARCH 2007

Figure 9: Inference Chain

We need to be able to explain gradient descent (including the order of learning weights in Back
Propagation).

40 Lecture 29 March 2007

40.1 Exam

Exam is worth 60%; Answer 5 of 7 questions.
Sample questions and answers follow, questions taken from last year's paper.

1 (a) What is a Production System Model?
List the �ve basic components.
Draw a diagram.

• Based on the idea that humans solve problems by applying their knowledge, expressed as a
production rule, to a given problem, represented with problem-speci�c information.

1. Knowledge Base - holds set of rules.

2. Database - holds set of facts.

3. Inference Engine - Software for �ring rules and learning new facts.

4. Explanation Facilities - Software for describing what rules were �red.

5. User Interface.

(4 marks)

1 (b) Draw an inference chain for this rule base:

1. Y &&C&&D → D

2. X&&B&&E → Y

3. A→ X

4. Z → result is true

(5 marks)

1 (c) Is Forward Chaining data or goal driven?
Explain your answer.

Data driven. Learn new facts from facts already known.
Order of �ring of rules in Forward Chaining: 3, 2, 1, 4.

39

41 LECTURE 30 MARCH 2007

(5 marks)

1 (d) What is Bayes Rule? How does it calculate hypothesis likelihood?

[This question is about Bayesian Reasoning within rule-Based systems]
h is hypothesis, D is observed data.

Bayes Rule: p(h|D) = p(D|h)×p(h)
p(D)

It allows reasoning under uncertainty to encompass prior information in probability of hypoth-
esis and probabilities of certain data given the hypothesis.

You can include probabilities in the results or just pick hypothesis with greatest probability
given the data.

(5 marks)

2 (a) Name three processes at Neo-Darwinism is based on.

1. Reproduction

2. Mutation

3. Competition/Selection

(3 marks)

2 (b) Brie�y describe the process of evolutionary computation simulation.

1. Create a population of individuals.

2. Evaluate their �tness.

3. Generate a new population through genetic operations.

4. Repeat from step 2 a number of times.

(4 marks)

2 (c) What are GAs?

See notes.

2 (d) We wish to get the �peak� or max of a function with two variables f(x, y) = (1−x)2e−x+y
Suggest a way of modelling this problem.

Represent x and y as a string of bits. Normalise x and y values. Explain how the number of bits
used will determine the accuracy of the results (e.g. 4−bits mean 16 possible values).

2 (e) How do you expect the �tness to change as the number of generations increases?

Best solution found will monotonically increase.

(2 marks)

41 Lecture 30 March 2007

41.1 Exam (continued)

TAC will not be coming up in the exam. We don't need to know proofs.
Answer 5 of 7 questions. Arti�cial Neural Networks and Fuzzy Logic is de�nitely coming

up. The other questions will cover topics from: Genetic Algorithms, Concept Learning, Bayesian
Learning, Reinforcement Learning, Decision Trees and Rule-Based systems (possibly more)

Topic areas:

40

41 LECTURE 30 MARCH 2007 41.1 Exam (continued)

41.1.1 Decision Trees

How are they constructed? What questions to ask?
Theory:

• What is entropy? A measure of the number of bits needed to encode information.
Know how to calculate it. Count number of positive (⊕) and negative () examples for each
attribute: E(ai) = −P ⊕ log2P ⊕−P 	 log2P	.

• Information Gain. What questions should be asked to eliminate the maximum number of
options?
Build up a picture of entropy of each attribute. Choose the attribute which when asked
about decreases the overall entropy by most.

• What should be the root node?

• Classify examples.

• When are Decision Trees best suited?
DTs give answers very quickly. They are more �exible than concept learning. Can cope with
noisy training data and disjunctive hypotheses.

• Example applications: Medical Diagnosis and Bank Loan application decisions.

41.1.2 Concept Learning

• Version spaces and Hypothesis Spaces.

� Subsets ⇒ Speci�city

� Super-sets ⇒ Generality

� Intersection ⇒ Incomparable

• What are Version Spaces?
Set of hypotheses consistent with training examples.

• How does the Candidate Elimination algorithm work?
Representation
Most general and most speci�c sets of hypotheses maintained and used to search the space
between them.

• Pseudo Code will not be asked for, but know how to describe the working of the algorithm.

41.1.3 Bayesian Learning

• Minimum Decision Length (MDC) and its relationship to Occam's Razor.

• Naive Bayes Learning and Bayesian Belief Networks (know their di�erences and the advan-
tages of each; When would each be used?)

• Bayes Optimum Classi�er - theoretical best classi�er possible. Problems with scalability.
What changes can be made to make it more e�cient? Know justi�cation for Gibb's Algo-
rithm - Expected error no worse than twice that of BOC.

• Practical Examples. Know the Newgroups example - What shortcuts were made? (e.g.
excluding works which we not topic-speci�c).

41

41.1 Exam (continued) 41 LECTURE 30 MARCH 2007

41.1.4 Reinforcement Learning

• Markov Decision Process (MDP); assumptions St+1 = δ(St, at) (where t is time, s is state
and a is action); Rt = r(st, at) (R is reward); Goal is to learn policy Π.

• Discount factors

• Deterministic Worlds with absorbing state.

� Understand Q learning and the training rule used to learn Q.

� Be able to describe Q values and how they are calculated.

� In deterministic worlds with in�nite repeated games Q converges. Reduce the learning
rate α to converge in non-deterministic worlds.

42

